

Random packing lattices

or: Bravais New World

Yoav Kallus

Santa Fe Institute

Unifying concepts in glass physics VI Aspen Center for Physics February 6, 2015

What do I mean by a lattice

What do I mean by a lattice

What do I mean by a lattice

Good packings are often lattices

Why we care about sphere packings in high d?

Packing problem restricted to lattices

Restricted to lattices, what is the densest packing structure?

п	L	
2	A_2	Lagrange (1773)
3	$D_{3} = A_{3}$	Gauss (1840)
4	D_4	Korkin & Zolotarev (1877)
5	D_5	Korkin & Zolotarev (1877)
6	E_6	Blichfeldt (1935)
7	E_7	Blichfeldt (1935)
8	E_8	Blichfeldt (1935)
24	Λ_{24}	Cohn & Kumar (2004)

The space of lattices Recall: $L = A\mathbb{Z}^n$

The space of lattices Recall: $L = A\mathbb{Z}^n$, so $\mathcal{L} = GL_n(\mathbb{R})$

The space of lattices Recall: $L = A\mathbb{Z}^n$, so $\mathcal{L} = GL_n(\mathbb{R})$ But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation.

The space of lattices

Recall: $L = A\mathbb{Z}^n$, so $\mathcal{L} = O(n) \setminus GL_n(\mathbb{R})$

But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation.

The space of lattices

Recall: $L = A\mathbb{Z}^n$, so $\mathcal{L} = O(n) \setminus GL_n(\mathbb{R}) / GL_n(\mathbb{Z})$ But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation. But $A\mathbb{Z}^n$ and $AQ\mathbb{Z}^n$ are the same lattice if $Q\mathbb{Z}^n = \mathbb{Z}^n$.

The space of lattices

Recall: $L = A\mathbb{Z}^n$, so $\mathcal{L} = O(n) \setminus GL_n(\mathbb{R}) / GL_n(\mathbb{Z})$ But $A\mathbb{Z}^n$ and $RA\mathbb{Z}^n$ are isometric if R is a rotation. But $A\mathbb{Z}^n$ and $AQ\mathbb{Z}^n$ are the same lattice if $Q\mathbb{Z}^n = \mathbb{Z}^n$.

 $O(n) \setminus GL_n(\mathbb{R}) = S_{>0}^n \subset \text{Sym}^n$, the space of symmetric, positive definite matrices: take $G = A^T A$.

We are interested in the lattices with packing radius ≥ 1 : $\{G \in S_{>0}^n : \mathbf{n} \cdot G\mathbf{n} \geq 1 \text{ for all } \mathbf{n} \in \mathbb{Z}^n\}.$

We are interested in the lattices with packing radius ≥ 1 : $\{G \in S_{>0}^n : \mathbf{n} \cdot G\mathbf{n} \geq 1 \text{ for all } \mathbf{n} \in \mathbb{Z}^n\}.$

We are interested in the lattices with packing radius ≥ 1 : $\{G \in S_{>0}^n : \mathbf{n} \cdot G\mathbf{n} \geq 1 \text{ for all } \mathbf{n} \in \mathbb{Z}^n\}.$

Minimum determinant (maximum density) occurs at vertices, which are finitely enumerable.

The Ryshkov polyhedron Instead of optimum (zero T), we can ask about finite T: $P(G) \sim \exp(-\beta p(\det G)^{1/2})$

The Ryshkov polyhedron Instead of optimum (zero T), we can ask about finite T: $P(G) \sim \exp(-\beta p(\det G)^{1/2})$

Thermodynamics of hard-sphere lattices

Kallus, Phys. Rev. E 87, 063307 (2013)

Y. Kallus (Santa Fe Institute)

Thermodynamics of hard-sphere lattices

Densest known lattice recovered in some runs for $n \leq 20$

Kallus, Phys. Rev. E 87, 063307 (2013)

A note about symmetry breaking

Is there a symmetry broken in the lattice "freezing" transition?

A note about symmetry breaking

Is there a symmetry broken in the lattice "freezing" transition?

 \mathcal{R} and det are symmetric under $GL_n(\mathbb{Z})$, and so is the "liquid" state, but not the "solid".

Thermodynamics of hard-sphere lattices

Kallus, Phys. Rev. E 87, 063307 (2013)

Y. Kallus (Santa Fe Institute)

Lattice RCP

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

Lattice isostaticity

- Isostaticity: #constraints = #dof's
- In RCP, Isostaticity \rightarrow average #contacts = 2d.
- In Lattice RCP: #dof's = $\frac{1}{2}d(d+1)$. Isostaticity \rightarrow #contacts = d(d+1).
 - Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

d	Runs	lsostatic
13	10,000	365
14	10,000	1,625
15	10,000	5,196
16	10,000	6,761
17	10,000	9,235
18	10,000	9,590
19	20,000	19,200
20	20,000	19,085
21	10,000	9,473
22	10,000	9,406
23	10,000	9,281
24	10,000	9,205

Pair correlations and quasicontacts

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

Contact force distribution

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

Quasicontacts and weak contacts

$\gamma = 0.314 \pm 0.004$ $heta = 0.371 \pm 0.010$

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

Uniform sampling of jammed latticesExtreme lattices can be exhaustively enumerated.d23456789perfect lattices112373310916>50000extreme lattices11236302408...

Uniform sampling of jammed lattices

Extreme lattices can be exhaustively enumerated.

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Y. Kallus (Santa Fe Institute)

Quasicontact abundance

In high-enough dimensions the quasicontact network determines the structure more than the contact network.

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Y. Kallus (Santa Fe Institute)

Density estimate from local structure

Kallus & Torquato, Phys. Rev. E 90, 022114 (2014)

Y. Kallus (Santa Fe Institute)

Lattice RCP

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

Computational topology of config'n space

Carlsson, Gorham, Kahle, & Mason, Phys. Rev. E 85, 011303 (2012)

Y. Kallus (Santa Fe Institute)

Conclusions

Lattices in high dimensions have enough dof's to exhibit "disorder".

Lattices are numerically accessible in much higher dimensions than hard-sphere fluids: crystallization for $n \leq 20$, jamming for even larger n.

Random close packed lattices are much denser than RCP hard spheres in n dimensions.

Mathematical structure allows complete enumeration, cell decomposition of config space, contacts→structure is a linear problem.