

Yoav Kallus

Santa Fe Institute

APS March Meeting Baltimore, March 15, 2016

Sphere packing in 3D

Theorem (Hales, 1998–2015) Every nonoverlapping arrangement of spheres in \mathbb{R}^3 fills at most $\pi/\sqrt{18} = 0.7405$ of space.

Sphere packing in 3D and higher dimensions

Theorem (Hales, 1998–2015) Every nonoverlapping arrangement of spheres in \mathbb{R}^3 fills at most $\pi/\sqrt{18} = 0.7405$ of space.

Applications in higher dimensions to transmitting, storing, and digitizing signals.

Curse of dimensionality

How to search for dense packings in high d? dof $\sim \exp(d)$.

Solution: good packings are often lattices. dof $\sim d^2$

Y. Kallus (Santa Fe Institute)

What do I mean by a lattice

What do I mean by a lattice

What do I mean by a lattice

Thermodynamics of hard-sphere lattices

MC sampling from the space of lattices with probability $\sim \exp(-pv)$

Kallus, Phys. Rev. E 87, 063307 (2013)

Y. Kallus (Santa Fe Institute)

Lattice RCP

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

Pair correlations and force distribution

Kallus, Marcotte, & Torquato, Phys. Rev. E 88, 062151 (2013)

Y. Kallus (Santa Fe Institute)

7 / 14

Recall: $L = A\mathbb{Z}^n$, but we only care about the $G = A^T A$. We need $\mathbf{n}^T G \mathbf{n} \ge 1$ for all $\mathbf{n} \in \mathbb{Z}^n$, and want to minimize det G (concave).

Recall: $L = A\mathbb{Z}^n$, but we only care about the $G = A^T A$. We need $\mathbf{n}^T G \mathbf{n} \ge 1$ for all $\mathbf{n} \in \mathbb{Z}^n$, and want to minimize det G (concave).

Y. Kallus (Santa Fe Institute)

Recall: $L = A\mathbb{Z}^n$, but we only care about the $G = A^T A$. We need $\mathbf{n}^T G \mathbf{n} \ge 1$ for all $\mathbf{n} \in \mathbb{Z}^n$, and want to minimize det G (concave).

Y. Kallus (Santa Fe Institute)

Recall: $L = A\mathbb{Z}^n$, but we only care about the $G = A^T A$. We need $\mathbf{n}^T G \mathbf{n} \ge 1$ for all $\mathbf{n} \in \mathbb{Z}^n$, and want to minimize det G (concave).

Recall: $L = A\mathbb{Z}^n$, but we only care about the $G = A^T A$. We need $\mathbf{n}^T G \mathbf{n} \ge 1$ for all $\mathbf{n} \in \mathbb{Z}^n$, and want to minimize det G (concave).

The topological theory of phase transitions

Carlsson, Gorham, Kahle, & Mason, Phys. Rev. E 85, 011303 (2012)

Y. Kallus (Santa Fe Institute)

Recall: $L = A\mathbb{Z}^n$, but we only care about the $G = A^T A$. We need $\mathbf{n}^T G \mathbf{n} \ge 1$ for all $\mathbf{n} \in \mathbb{Z}^n$, and want to minimize det G (concave).

Y. Kallus (Santa Fe Institute)

Place $m = \alpha n$ points randomly on the (n - 1)-sphere, and try to find the point farthest from all of these.

Franz & Parisi, arXiv:1501.03397

Y. Kallus (Santa Fe Institute)

Place $m = \alpha n$ points randomly on the (n - 1)-sphere, and try to find the point farthest from all of these.

Franz & Parisi, arXiv:1501.03397

Y. Kallus (Santa Fe Institute)

Place $m = \alpha n$ points randomly on the (n - 1)-sphere, and try to find the point farthest from all of these.

Franz & Parisi, arXiv:1501.03397

Y. Kallus (Santa Fe Institute)

Place $m = \alpha n$ points randomly on the (n - 1)-sphere, and try to find the point farthest from all of these.

Franz & Parisi, arXiv:1501.03397

Y. Kallus (Santa Fe Institute)

Place $m = \alpha n$ points randomly on the (n - 1)-sphere, and try to find the point farthest from all of these.

Franz & Parisi, arXiv:1501.03397

Y. Kallus (Santa Fe Institute)

Place $m = \alpha n$ points randomly on the (n - 1)-sphere, and try to find the point farthest from all of these.

Same universality class as (off-lattice) sphere packing in $d
ightarrow \infty$

Franz & Parisi, arXiv:1501.03397

Y. Kallus (Santa Fe Institute)

Finite-size scaling

Finite-size scaling

Computational topology

Conclusions

Lattice sphere packing

- random packings have high density
- no quenched disorder

The "simplest" model

 same universality class as off-lattice packing

- almost linear (minimizing a concave objective over a convex polytope)
- nice framework to study: topology, isostaticity, marginal stability, finite-size scaling