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Packing problems:
Optimization: given a collection of figures, arrange them without overlaps
as densely as possible.

Feasibility: find an arrangement of density > φ

Possible computational approaches:
● Complete algorithm

● Specialized incomplete (heuristic) algorithm

● General purpose incomplete algorithm

e.g.: simulated annealing, genetic algorithms, etc. 

Divide and Concur belongs to the last category



  

Two constraint feasibility

Example:

A = permutations of “acgiknp”

B = 7-letter English words



  

Example:

A = permutations of “acgiknp”

B = 7-letter English words

x = “packing”

Two constraint feasibility



  

More structure

A, B are sets in a Euclidean configuration 
space Ω
simple constraints:
easy, efficient projections to A, B



  

Projection to the packing (no overlaps) constraint



  

Projection to the packing (no overlaps) constraint



  

Dividing the Constraints



  

Dividing the Constraints



  

Dividing the Constraints



  

Projection to concurrence constraint 



  

Projection to concurrence constraint 



  

Divide and Concur scheme

      A             B       

No overlaps between 
designated replicas

All replicas of a 
particular figure concur

“divided” packing 
constraints

“concurrence” 
constraint



  

What can we do with projections?

● alternating projections:

● Douglas-Rachford iteration (a/k/a difference map):



  

Finite packing problems

Gravel & Elser, Phys. Rev. E (2008)



  

The kissing number problem in 10D

Elser & Gravel, Disc. Compu. Geom. (2010)

Finite packing problems

Special dimensions matter!



  

Generalization to non-spherical Particles



  

Generalization to non-spherical Particles



  

      A             B       

Generalization to non-spherical Particles

“divided” packing 
constraints (rigidity 
relaxed)

“concurrence” + 
rigidity constraints



  

      A             B       

Generalization to non-spherical Particles

“divided” packing 
constraints (rigidity 
relaxed)

“concurrence” + 
rigidity constraints



  

Generalization to periodic packings

replicas replicas + periodic images



  

Generalization to periodic packings

replicas replicas + periodic images



  

Regular tetrahedron packing 
(Stay tuned for next talk)

Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010) 



  

Regular tetrahedron packing 

Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010) 



  

Regular tetrahedron packing 

Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010) 



  

Disc. Compu. Geom. (1990)



  

Dense regular pentatope packing –
also a dimer double lattice!

φ = 128/219 = 0.5845

Kallus, Elser, & Gravel, arXiv: 1003.3301 (2010) 



  

Sphere packing and kissing in higher dimensions 

Densest known
lattice packing

in d dimensions:

lattice with highest
known kissing

number in d
dimensions:

Kallus, Elser, & Gravel, arXiv: 1003.3301 (2010) 



  

Tetrahedron packing upper bound

1. Prove φ ≤ 1 – ε, where ε > 0
2. Maximize ε

Challenge:



  

Tetrahedron packing upper bound

1. Prove φ ≤ 1 – ε, where ε > 0
2. Maximize ε
2'. Minimize length of proof

Solution: ε = 5.01... x 10- 2 5  (15 pages)

Tetrahedron packing upper bound

Gravel, Elser, & Kallus, in preparation

Challenge:
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