The Divide and Concur approach to packing

Yoav Kallus Physics Dept. Cornell University

j/w: Veit Elser Simon Gravel

Particulate matter workshop MPIPKS, Dresden May 31, 2010

Packing problems:

Optimization: given a collection of figures, arrange them without overlaps as densely as possible.

Feasibility: find an arrangement of density > ϕ

Possible computational approaches:

- Complete algorithm
- Specialized incomplete (heuristic) algorithm
- General purpose incomplete algorithm

e.g.: simulated annealing, genetic algorithms, etc.

Divide and Concur belongs to the last category

Two constraint feasibility $x \in A \cap B$

Example:

- A = permutations of "acgiknp"
- B = 7-letter English words

Two constraint feasibility $x \in A \cap B$

Example:

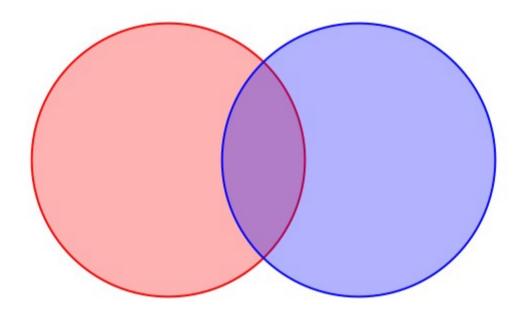
A = permutations of "acgiknp"
B = 7-letter English words

More structure

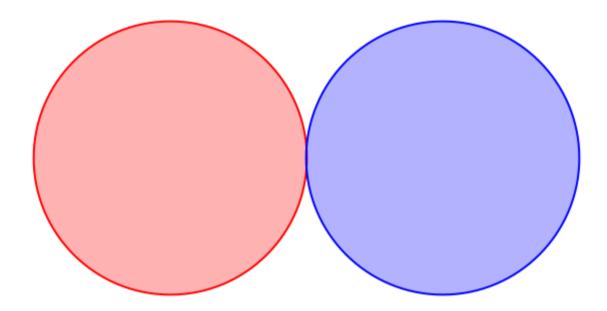
A, B are sets in a Euclidean configuration space Ω simple constraints: easy, efficient **projections** to A, B

$$P_A(x) = y \in A$$
 s.t. $||x-y||$ is minimized

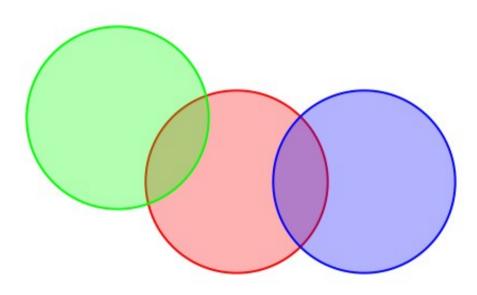
Projection to the packing (no overlaps) constraint



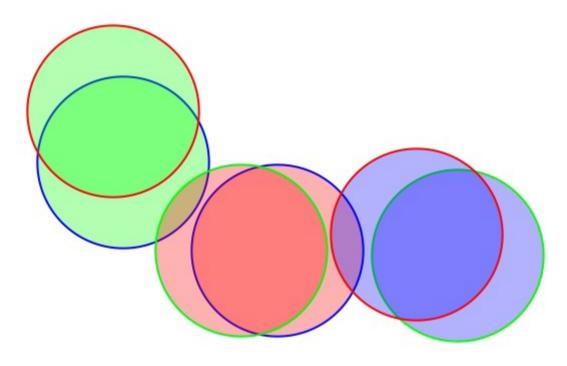
Projection to the packing (no overlaps) constraint



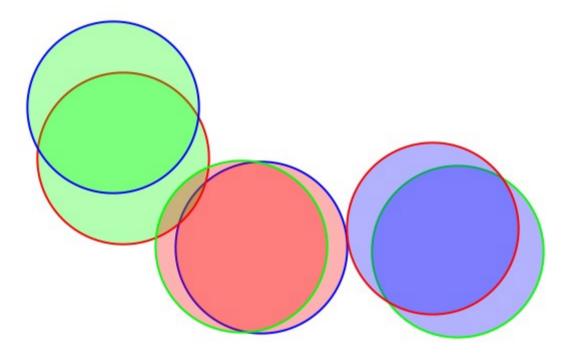
Dividing the Constraints



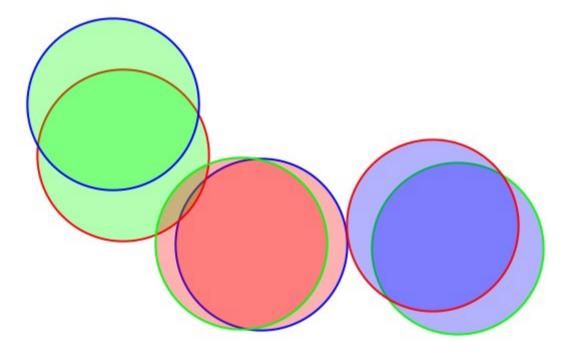
Dividing the Constraints



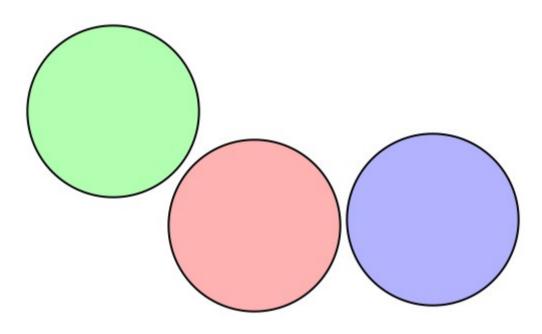
Dividing the Constraints



Projection to concurrence constraint



Projection to concurrence constraint



Divide and Concur scheme

No overlaps between designated replicas

All replicas of a particular figure concur

"divided" packing constraints

"concurrence" constraint What can we do with projections?

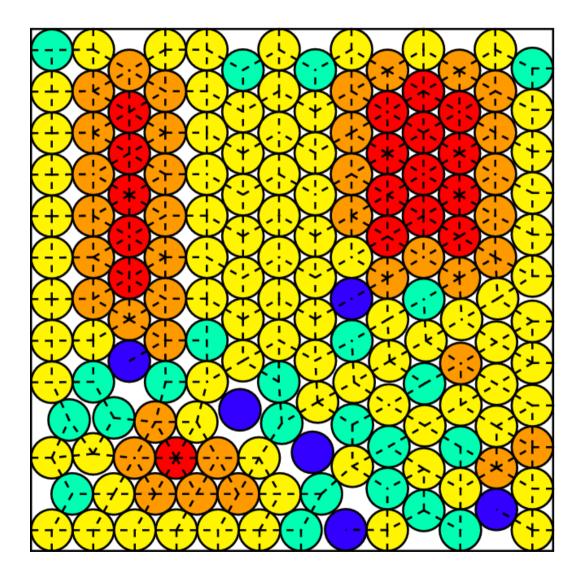
• alternating projections:

$$x'_{i} = P_{A}(x_{i}); \quad x_{i+1} = P_{B}(x'_{i})$$

• Douglas-Rachford iteration (a/k/a difference map):

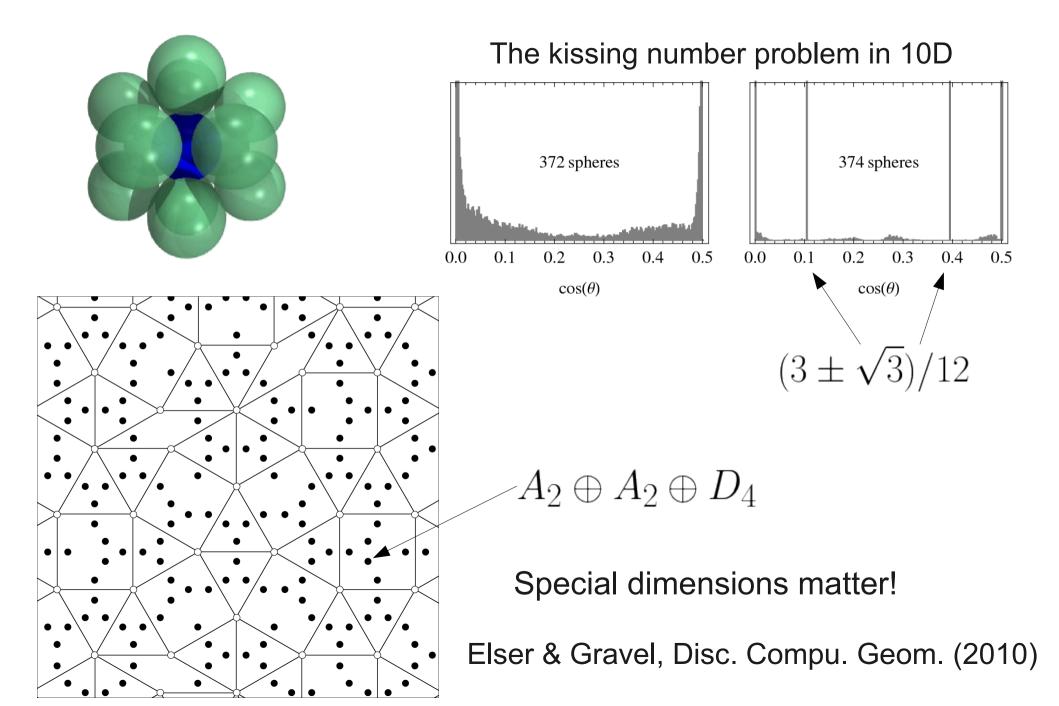
$$x_{i+1} = x_i + P_B(2P_A(x_i) - x_i) - P_A(x_i)$$

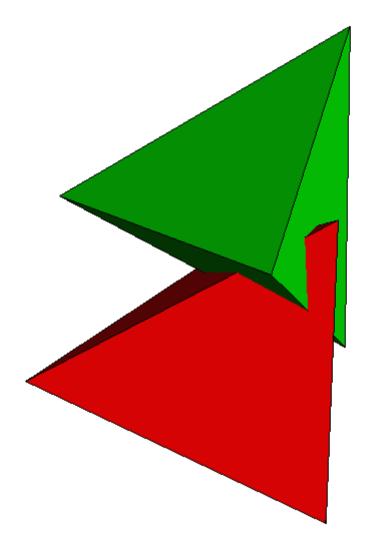
Finite packing problems



Gravel & Elser, Phys. Rev. E (2008)

Finite packing problems



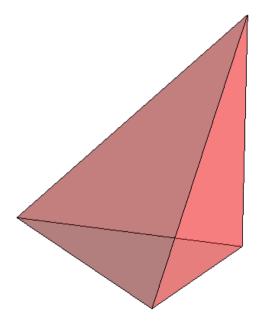




Α

"divided" packing constraints (rigidity relaxed) В

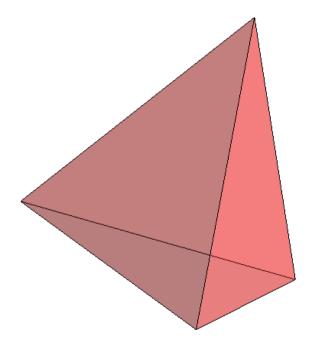
"concurrence" + rigidity constraints



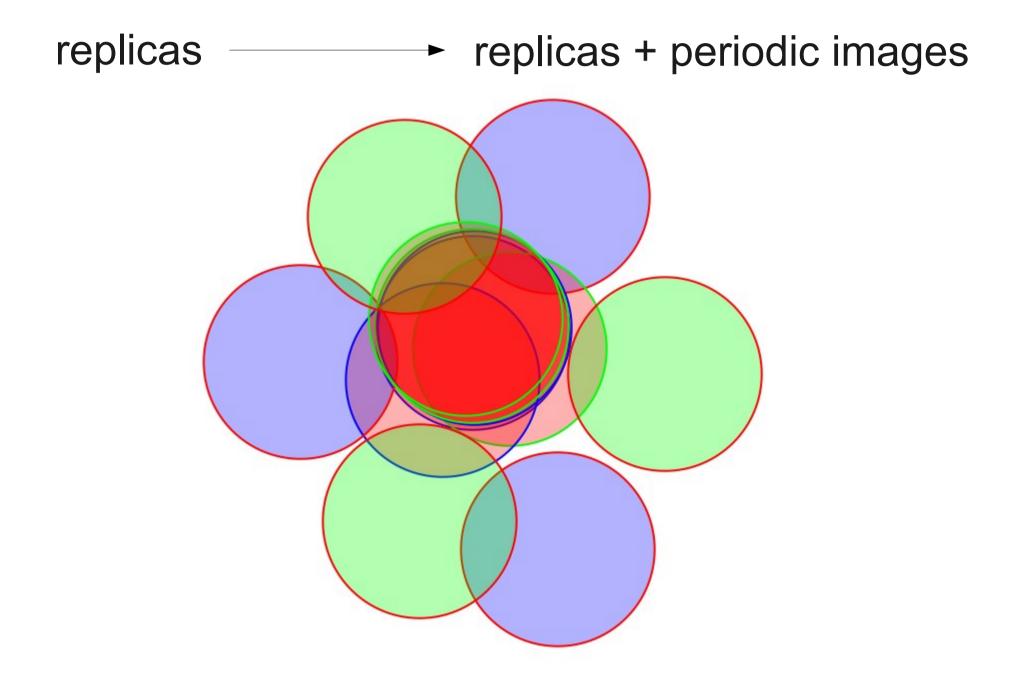
Α

"divided" packing constraints (rigidity relaxed) В

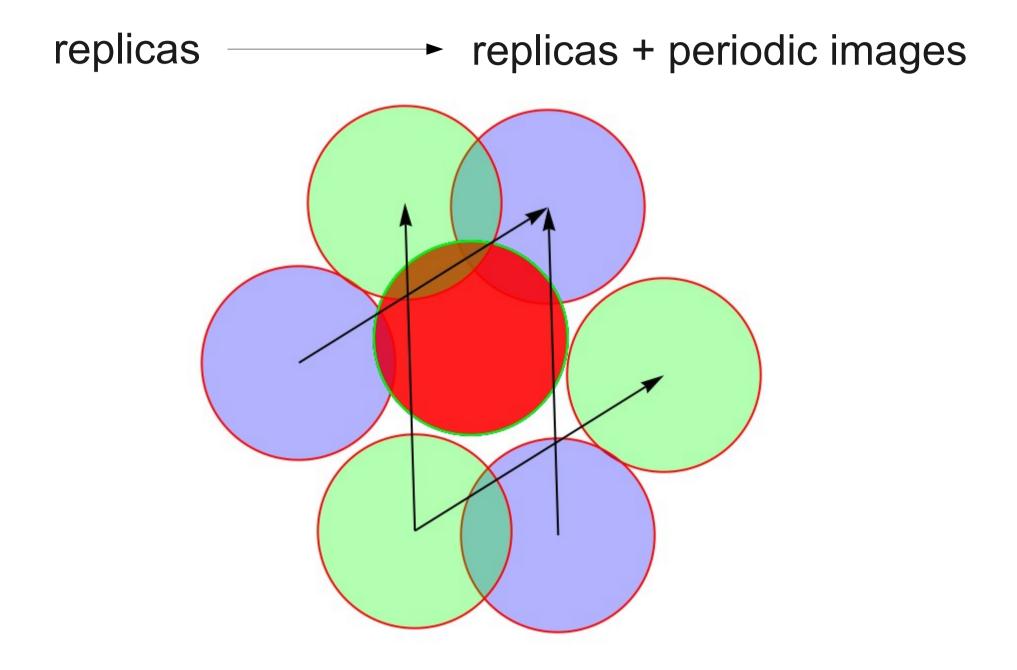
"concurrence" + rigidity constraints



Generalization to periodic packings

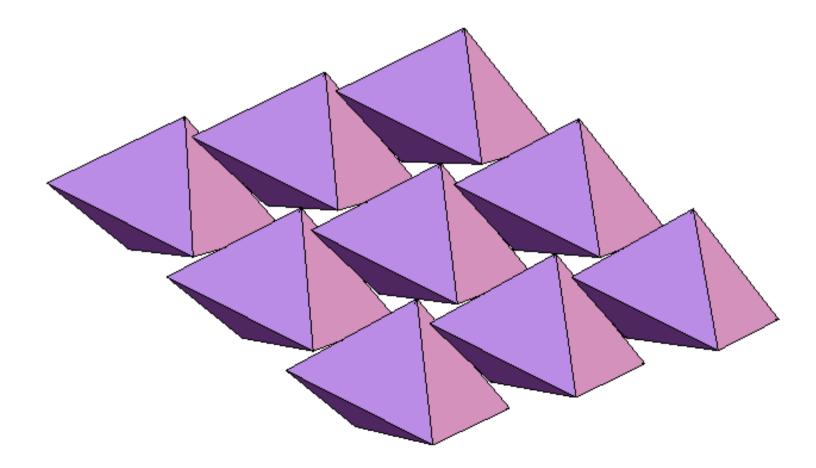


Generalization to periodic packings



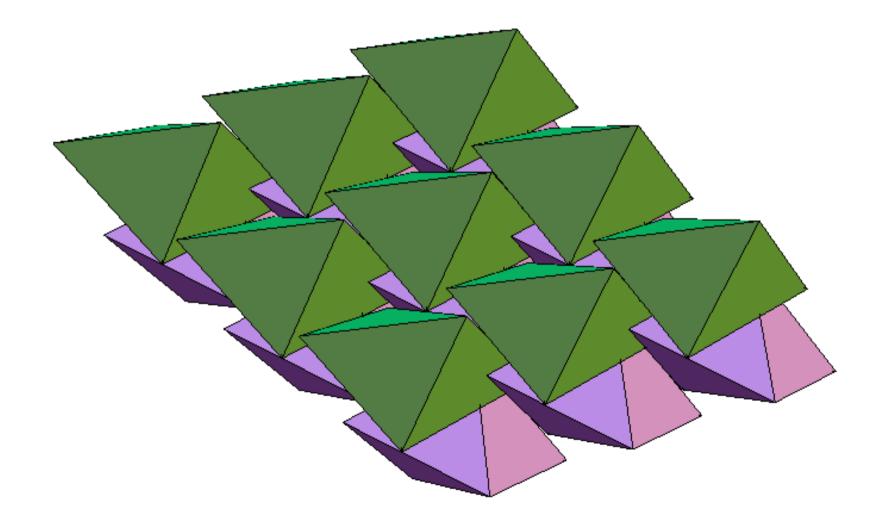
Regular tetrahedron packing

(Stay tuned for next talk)



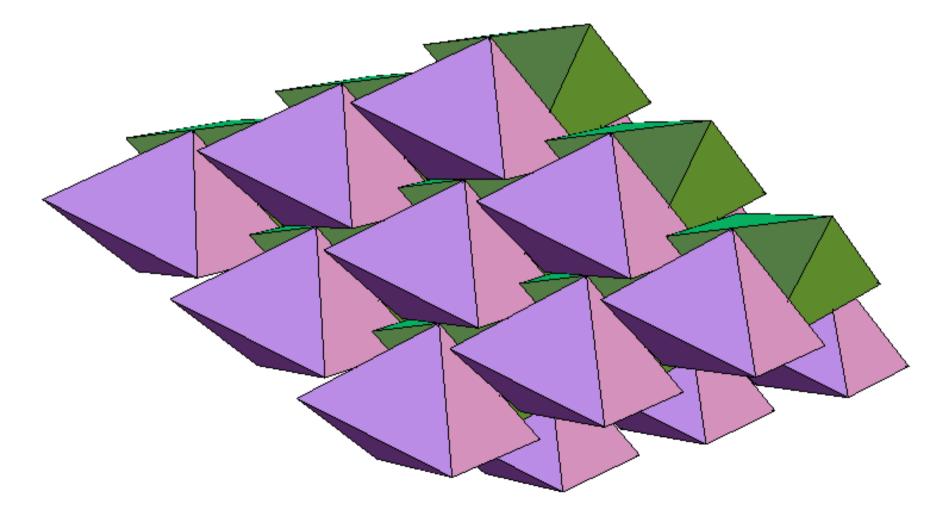
Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010)

Regular tetrahedron packing



Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010)

Regular tetrahedron packing



Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010)

Double-Lattice Packings of Convex Bodies in the Plane

G. Kuperberg¹ and W. Kuperberg² Disc. Compu. Geom. (1990)

¹ Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA

² Division of Mathematics, Auburn University, Auburn, AL 36849, USA

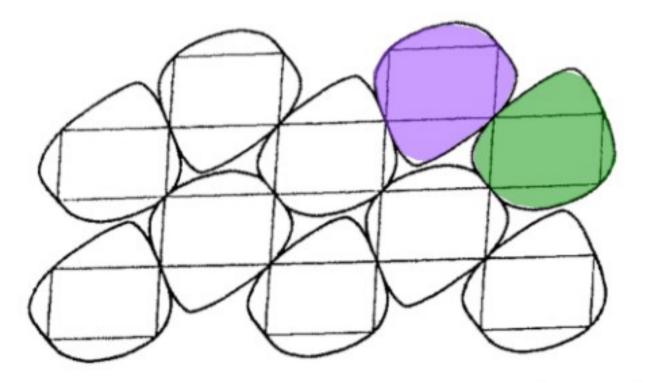
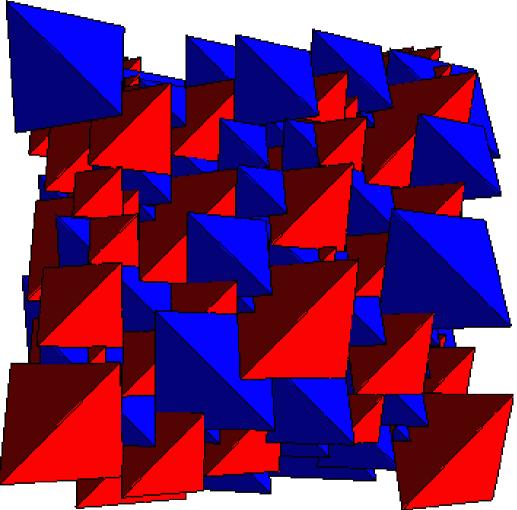


Fig. 4. Double-lattice packing generated by an extensive parallelogram.

Dense regular pentatope packing – also a dimer double lattice!



$\varphi = 128/219 = 0.5845$

Kallus, Elser, & Gravel, arXiv: 1003.3301 (2010)

Sphere packing and kissing in higher dimensions

Volume 290 Grundlehren der mathematischen Wissenschaften	J.H. CONWAY N.J.A. SLOANE	Densest known lattice packing in <i>d</i> dimensions:	d 2 3 4 5 6 7 8 9 10 11 12 13	$egin{array}{c} \Lambda_{ m densest} & \ A_2 & \ D_3 & \ D_4 & \ D_5 & \ E_6 & \ E_7 & \ E_8 & \ \Lambda_9 & \ \Lambda_{10} & \ K_{11} & \ K_{12} & \ K_{13} & \ \end{array}$	$\begin{array}{c} \phi_{\rm densest}^{(L)} \\ 0.90690 \\ 0.74047 \\ 0.61685 \\ 0.46526 \\ 0.37295 \\ 0.29530 \\ 0.25367 \\ 0.14577 \\ 0.092021 \\ 0.060432 \\ 0.049454 \\ 0.029208 \end{array}$	$\langle N_{\rm iter} \rangle$ 42 230 191 308 173 217 99 161 394 421 397 577
A Series of Comprehensive Studies in Mathematics	SPHERE PACKINGS, LATTICES AND GROUPS		14	Λ_{13} Λ_{14}	0.029208	1652
	THIRD EDITION	lattice with highest known kissing number in <i>d</i> dimensions:	$\begin{array}{c} d \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array}$	$egin{array}{c} \Lambda_{ m highest} \ A_2 \ D_3 \ D_4 \ D_5 \ E_6 \end{array}$	$ \frac{ au_{ m highest}^{(L)}}{6} \\ 12 \\ 24 \\ 40 \\ 72 \\ ext{}$	$\langle N_{\rm iter} \rangle$ 27 54 132 163 225
	Springer		7 8 9	E_7 E_8 Λ_9	126 240 272	597 511 350
Kallus, Elser, & Gravel, arXiv: 1003.3301 (2010)			10 11	$\Lambda_{10} = \Lambda_{11}$	336 438	438 549

Tetrahedron packing upper bound

Challenge:

1. Prove $\phi \leq 1 - \epsilon$, where $\epsilon > 0$

2. Maximize ε

Tetrahedron packing upper bound

Challenge:

1. Prove $\phi \leq 1 - \epsilon$, where $\epsilon > 0$

2. Maximize ε

2'. Minimize length of proof

Solution:
$$\epsilon = 5.01... \times 10^{-25}$$
 (15 pages)

Gravel, Elser, & Kallus, in preparation