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General packing problem

Let φ
max

(K) be the highest achievable density for packings of

convex d-dimensional body K.

2D periodic examples:

φ = 0.817 φ = 0.854 φ = 0.921 

φ
max

(K) for d > 2 known only for spheres, space-filling solids. 

N = 1 N = 2 N = 2
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David Hilbert
(1862-1943)

“How can one arrange most densely in 
space an infinite number of equal 
solids of a given form, e.g., spheres 
with given radii or regular tetrahedra 
with given edges (or in prescribed 
position), that is, how can one so fit 
them together that the ratio of the filled 
to the unfilled space may be as large 
as possible?”

From Hilbert's 18th problem:
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0.7796 Rogers (1958)

0.8547 Kallus et al. (2009)

0.7786 Chen (2008)

0.7175 Conway &
         Torquato (2006)

0.7731 Muder (1993)

0.8563 Chen et al. (2010)

0.7405 Hales (1998)

0.7

0.8

0.9

1.0
φ

Some upper and 
lower bounds
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1 – 2.6x10–25  Gravel et al. (2010)



  

Argument: the sphere cannot fill its
Voronoi region, a polyhedron

Rogers bound

φ(B) ≤ 0.7796  
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Argument: the sphere cannot fill its
Voronoi region, a polyhedron

Rogers bound

φ(B) ≤ 0.7796  

The tetrahedron can easily
fill its Voronoi region
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Regular tetrahedra do not fill space

Missing angle: 7.4º 

Therefore, φ(T) < 1 

But can we find φU < 1 such that φ(T) ≤ φU?
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Tetrahedron packing upper bound

1. Prove φ ≤ 1 – ε, where ε > 0
2. Maximize ε

Optimization challenge:



  

Tetrahedron packing upper bound

1. Prove φ ≤ 1 – ε, where ε > 0
2. Maximize ε
2'. Minimize length of proof

Solution: ε = 2.6... x 10- 25 (15 pages)

Tetrahedron packing upper bound

Gravel, Elser, & Kallus, Discrete and Computational Geometry (2010)

Optimization challenge:



  

“Wedge”

If we can put a lower bound the 
amount of uncovered space in a unit 
ball with five non-overlapping wedges, 
we can get a non-trivial upper bound 
on the density of a tetrahedron 
packing.

Bound from angle mismatch
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If all wedge edges pass through the 
center, we can easily calculate the 
uncovered volume. Unfortunately, this 
isn't given.

Still, if all wedge edges pass within a given 
distance of the center, we can still easily 
calculate a bound on the uncovered volume. 

And if one or more edge wedges 
fall outside the yellow sphere, we 
are left with a simpler configuration 
inside the yellow sphere, and we 
can try to put a bound on the 
uncovered volume inside it.

By applying this argument iteratively:11 φ(T) ≤ 1 – (2.6...) x 10-25
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Lower bounds (densest known packings)

1. Conway & Torquato (2006)

Icosahedral packing: φ = 0.7166

N=20

“Welsh” packing: φ = 0.7175

N=34
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Conjecture: φ
max

(T) <  φ
max

(B)

PNAS (2006)



  

Densest known packings

2. Chen (2008)

“wagon wheels” packing: φ = 0.7786

N=18

φ
max

(T) >  φ
max

(B)
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Discrete & Compu. Geom. (2008)



  

3. Torquato & Jiao (2009)

Densest known packings

φ = 0.7820
N = 72

φ = 0.8226
N = 314

Challenge for 
numerical search: 
highly frustrated 
optimization problem

Search often got stuck 
at local optima
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Nature (2009)

Phys. Rev. E (2009)



  

Densest known packings

Method: “divide and concur”

φ = 0.8547
N = 4 (!)

All tetrahedra equivalent
(tetrahedron-transitive packing)

5. Chen et al. (2010)

Slight analytical improvement to the above structure: φ = 0.8563 
(New, denser, packing is no longer tetrahedron-transitive) 
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4. Kallus et al. (2009)

Discrete & Compu. Geom. (2010)

Discrete & Compu. Geom. (2010)



  

Computational approach to packing problems:
Optimization: given a collection of figures, arrange them without overlaps
as densely as possible.

Feasibility: find an arrangement of density > φ

Possible approaches:
● Complete algorithm

● Specialized incomplete (heuristic) algorithm

● General purpose incomplete algorithm

e.g.: simulated annealing, genetic algorithms, etc. 

Divide and Concur belongs to the last category



  

Two constraint feasibility

Example:

A = permutations of “acgiknp”

B = 7-letter English words



  

Example:

A = permutations of “acgiknp”

B = 7-letter English words

x = “packing”

Two constraint feasibility



  

More structure

A, B are sets in a Euclidean configuration 
space Ω
simple constraints:
easy, efficient projections to A, B



  

J. Douglas and H. H. Rachford, On the numerical solution of
heat conduction problems in two or three space variables,
Trans. Am. Math. Soc. 82 (1956), 421–439.
        splitting scheme for numerical PDE solutions

J.R. Fienup, Phase retrieval algorithms: a comparison, Applied
Optics 21 (1982), 2758-2769.
        rediscovery, control theory motivation, phase retrieval

V. Elser, I. Rankenburg, and P. Thibault, Searching with iterated
maps, PNAS 104, (2007), 418-423.
        generalized form, applied to hard/frustrated problems:
        spin glass, SAT, protein folding, Latin squares, etc.

Brief (incomplete) history of



  

Projection to the packing (no overlaps) constraint



  

Projection to the packing (no overlaps) constraint



  

Dividing the Constraints



  

Dividing the Constraints



  

Dividing the Constraints



  

Projection to concurrence constraint 



  

Projection to concurrence constraint 



  

Divide and Concur scheme

      A             B       

No overlaps between 
designated replicas

All replicas of a 
particular figure concur

“divided” packing 
constraints

“concurrence” 
constraint



  

What can we do with projections?

● alternating projections:

● Douglas-Rachford iteration (a/k/a difference map):



  

Finite packing problems

Gravel & Elser, Phys. Rev. E (2008)



  

The kissing number problem in 10D

Elser & Gravel, Disc. Compu. Geom. (2008)

Finite packing problems

Special dimensions matter!



  

Generalization to non-spherical Particles



  

Generalization to non-spherical Particles



  

      A             B       

Generalization to non-spherical Particles

“divided” packing 
constraints (rigidity 
relaxed)

“concurrence” + 
rigidity constraints



  

      A             B       

Generalization to non-spherical Particles

“divided” packing 
constraints (rigidity 
relaxed)

“concurrence” + 
rigidity constraints



  

Generalization to periodic packings

replicas replicas + periodic images



  

Generalization to periodic packings

replicas replicas + periodic images



  

Sphere packing and kissing in higher dimensions 

Densest known
lattice packing

in d dimensions:

lattice with highest
known kissing

number in d
dimensions:

Kallus, Elser, & Gravel, Phys. Rev. E (2010) 
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0.7796 Rogers (1958)

0.8547 Kallus et al. (2009)

0.7786 Chen (2008)

0.7175 Conway &
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Kallus & Elser, preprint (2010) 

“physical” tetrahedra 
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