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The long history of packing problems

“In general, the attempt to give a shape to each
of the simple bodies is unsound, for the reason,
first, that they will not succeed in filling the
whole. It is agreed that there are only three
plane figures which can fill a space, the triangle,
the square, and the hexagon, and only two
solids, the pyramid [tetrahedron] and the cube.”

– Aristotle. On the Heavens, volume III
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Building blocks by design
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Glotzer and Solomon, Nature Materials 2007



Packing problems in the modern era
“How can one arrange most densely in space an
infinite number of equal solids of a given form, e.g.,
spheres with given radii or regular tetrahedra with
given edges, that is, how can one so fit them
together that the ratio of the filled to the unfilled
space may be as large as possible?”

Theorem (Hales)

No sphere packing fills more than 0.7404 of space.

Figures for which optimal packing density is known: space filling tiles,
2D 2-fold-symmetric shapes, 3D spheres (and corollaries).
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Packing regular tetrahedra
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Packing convex shapes
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Damasceno, Engel, and Glotzer, 2012.



Ulam’s Conjecture

“Stanislaw Ulam told me in 1972 that he
suspected the sphere was the worst case of
dense packing of identical convex solids, but
that this would be difficult to prove.”
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1995 postscript to the column “Packing Spheres”



Ulam’s Last Conjecture

“Stanislaw Ulam told me in 1972 that he
suspected the sphere was the worst case of
dense packing of identical convex solids, but
that this would be difficult to prove.”
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1995 postscript to the column “Packing Spheres”



In 2D disks are not worst

φ = 0.9069

φ = 0.9062

φ = 0.9024
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Why can we improve over circles?

To first order:
∆(vol. per particle) ∝ average of deformation in the contact dirs.

∆(vol. of particle) ∝ average of deformation in all dirs.
So, we can only hope to break even, and make up in higher orders.
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Why can we improve over circles?

f(θ)
ϕ

ϕ

∑6

i=0
f (πi3 + ϕ)

f (θ) = 1 + εcos(8θ)
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Why can we not improve over spheres?

Let xi , i = 1, . . . , 12, be the twelve contact points on
the sphere in the f.c.c. packing.

Lemma

Let f be an even function S2 → R.
∑12

i=1 f (Rxi) is
independent of R ∈ SO(3) if and only if the expansion
of f (x) in spherical harmonics terminates at l = 2.

Theorem (K)

The sphere is a local minimum of φ, the packing
density, among convex, centrally symmetric bodies.
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K, Adv Math 2014
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K, Adv Math 2014



Random close packing

Caveats:

Protocol dependence, no single RCP density. We compare
different shapes under same protocol

Very elongated/flat particles pack much worse than spheres, so
spheres can only ever be a local pessimum

p∆V =
∑

i

min
Ri

∑

j∈∂i

fij∆r(Rinij) + O(∆r 3/2),

∆r(u) = deformation in direction u.

In RCP, every coordination shell is different, so even if for some, we
manage to break even, for most we cannot.

Result: φ− φspheres > c |∆r(u)−∆r(u)|+ O(|∆r(u)|
3/2

).
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K, Soft Matter 2016



One-parameter shape families
Let ρ = |∆r(u)−∆r(u)|, we can calculate η = 1

3
dφ/dρ|ρ=0+ :

η = 0.94

η = 0.79

η = 0.86

η = 1.08

η = 1.36

η = 0.77

η = 1.45

η = 1.06

η = 1.31

η = 1.01

η = 1.32

η = 1.20
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End of slides

Back up slides follow
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Comparison with simulation results
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Main plot: ellipsoids; inset: superballs
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In 2D disks are not worst

φ =
0.9069

φ =
0.9024

φ =
0.9062

φ =
0.8926(?)
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Regular heptagon is locally worst packing (?)

0.8926(?)

Theorem (K)

Any convex body sufficiently close to the
regular heptagon can be packed at a filling
fraction at least that of the “double lattice”
packing of regular heptagons.

It is not proven, but highly likely, that the
“double lattice” packing is the densest
packing of regular heptagons.
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K, Geometry & Topology 2015



Local optimality of the double lattice packing

Work with Wöden Kusner (TU Graz)

φ = 0.9213 φ = 0.8926
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Pentagons

S

P

Q

R

This configuration is a local minimum among nonoverlapping
configurations of area(SPQR).
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K and Kusner, arXiv:1509.02241



Heptagons

I

II

S

P

Q

R

g1

g2g3

g4

This configuration is not a local minimum of area(SPQR).
But it is a local minimum of area(SPQR) +

∑4
i=1 gi , where, e.g.,

g
(I )
3 + g

(II )
3 = 0.
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K and Kusner, arXiv:1509.02241



Local optimality of the double lattice packing

φ = 0.9213

I

II

φ = 0.8926

The same method that works for heptagons works for (almost) any
convex polygon and shows the “double lattice” construction gives
locally optimal packings.
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K and Kusner, arXiv:1509.02241


