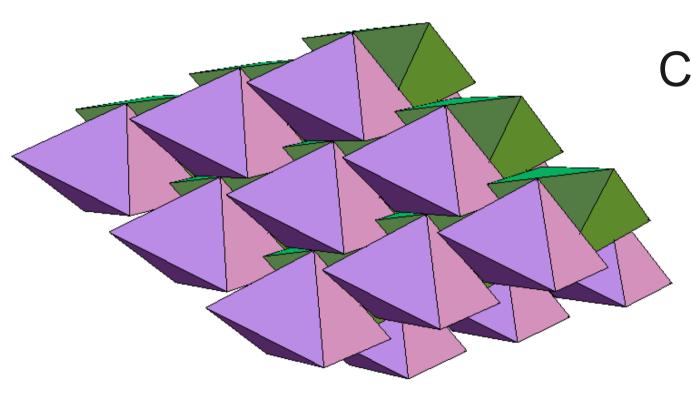
The Divide and Concur approach to packing



Yoav Kallus
Physics Dept.
Cornell University

j/w: Veit Elser Simon Gravel

Shanks Conference Vanderbilt University

May 17, 2010

Packing problems:

Optimization: given a collection of figures, arrange them without overlaps as densely as possible.

Feasibility: find an arrangement of density > φ

Possible computational approaches:

- Complete algorithm
- Specialized incomplete (heuristic) algorithm
- General purpose incomplete algorithm

e.g.: simulated annealing, genetic algorithms, etc.

Divide and Concur belongs to the last category

Two constraint feasibility

$$x \in A \cap B$$

Example:

A = permutations of "ailmopt"

B = 7-letter English words

Two constraint feasibility

$$x \in A \cap B$$

Example:

A = permutations of "ailmopt"

B = 7-letter English words

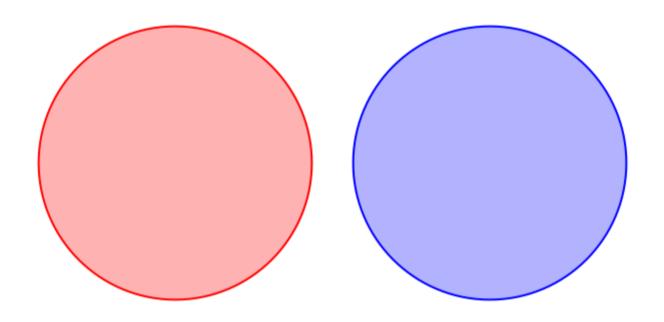
$$x = "optimal"$$

More structure

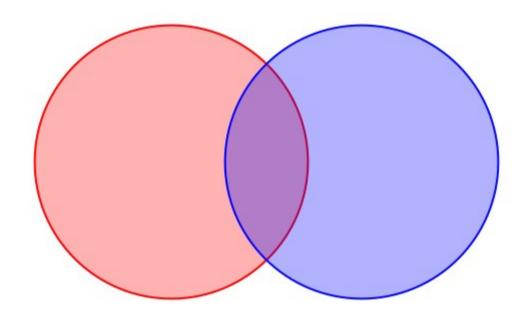
A, B are sets in a Euclidean configuration space Ω simple constraints: easy, efficient **projections** to A, B

$$P_A(x) = y \in A$$
 s.t. $||x-y||$ is minimized

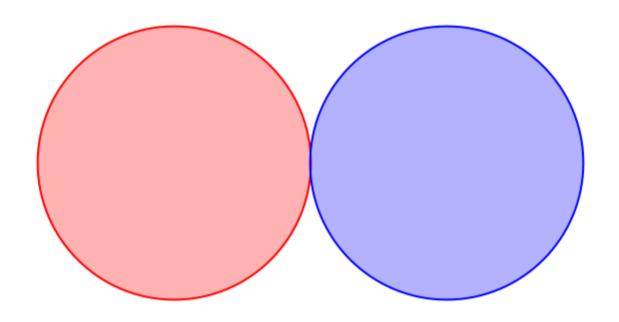
Projection to the packing (no overlaps) constraint



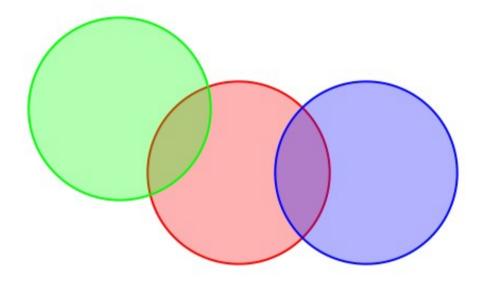
Projection to the packing (no overlaps) constraint



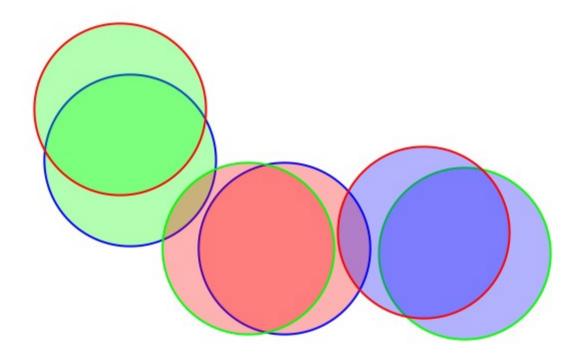
Projection to the packing (no overlaps) constraint



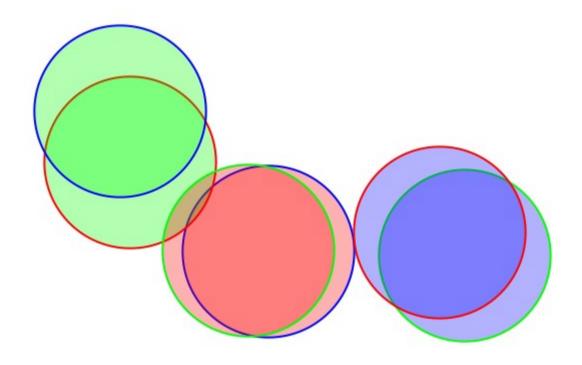
Dividing the Constraints



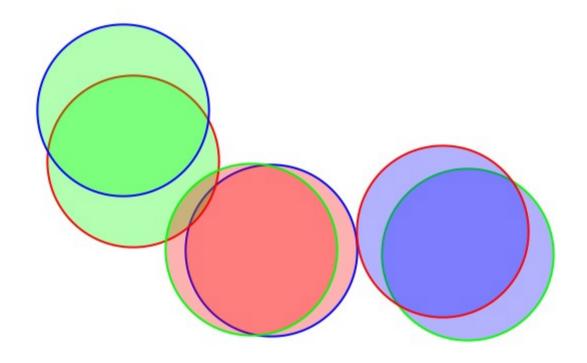
Dividing the Constraints



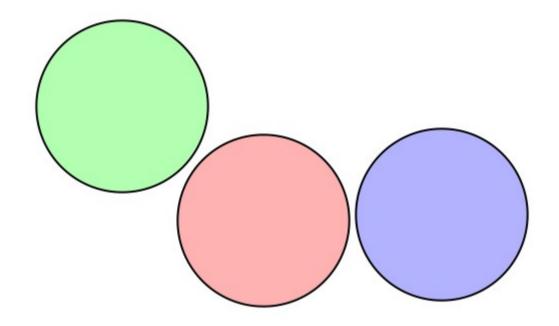
Dividing the Constraints



Projection to concurrence constraint



Projection to concurrence constraint



Divide and Concur scheme

____A_____B____

No overlaps between designated replicas

All replicas of a particular figure concur

"divided" packing constraints

"concurrence" constraint

What can we do with projections?

alternating projections:

$$x'_{i} = P_{A}(x_{i}); \quad x_{i+1} = P_{B}(x'_{i})$$

Douglas-Rachford iteration (a/k/a difference map):

$$x_{i+1} = x_i + P_B(2P_A(x_i) - x_i) - P_A(x_i)$$

Brief (incomplete) history of

$$x_{i+1} = x_i + P_B(2P_A(x_i) - x_i) - P_A(x_i)$$

J. Douglas and H. H. Rachford, *On the numerical solution of heat conduction problems in two or three space variables*, Trans. Am. Math. Soc. 82 (1956), 421–439. splitting scheme for numerical PDE solutions

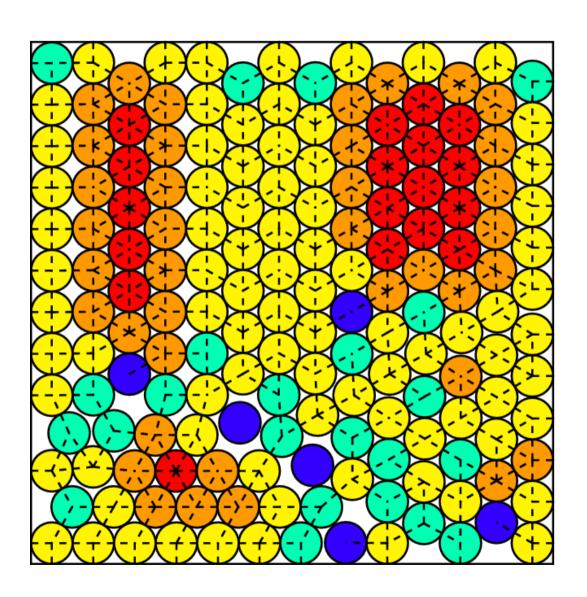
J.R. Fienup, Phase retrieval algorithms: a comparison, Applied Optics 21 (1982), 2758-2769.

rediscovery, control theory motivation, phase retrieval

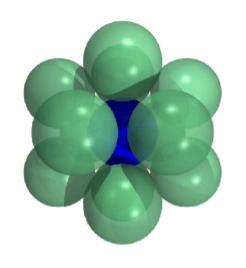
V. Elser, I. Rankenburg, and P. Thibault, Searching with iterated maps, PNAS 104, (2007), 418-423.

generalized form, applied to hard/frustrated problems: spin glass, SAT, protein folding, Latin squares, etc.

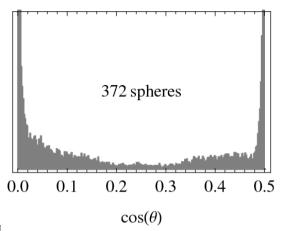
Finite packing problems

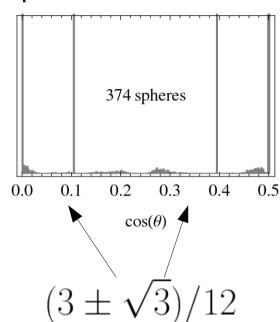


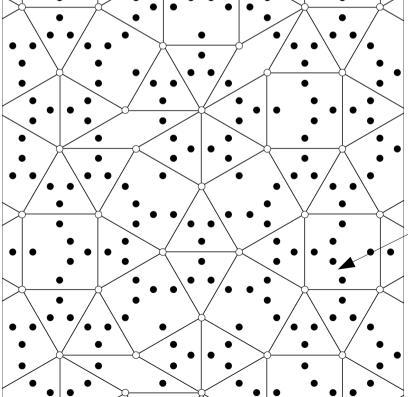
Finite packing problems



The kissing number problem in 10D

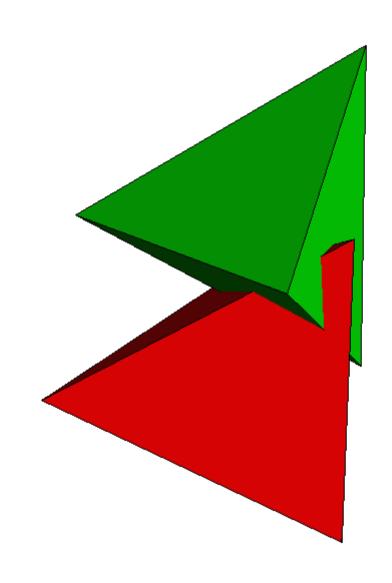


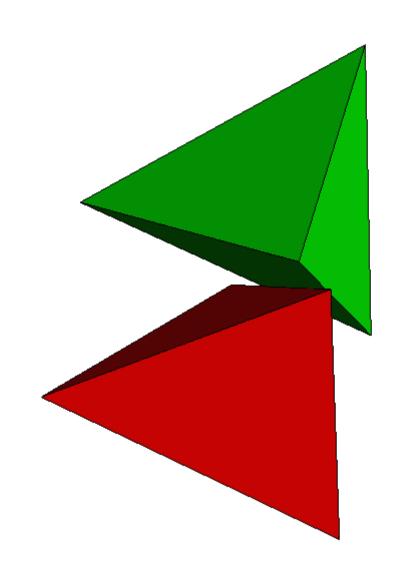




$$A_2 \oplus A_2 \oplus D_4$$

Elser & Gravel, Disc. Compu. Geom. (2010)



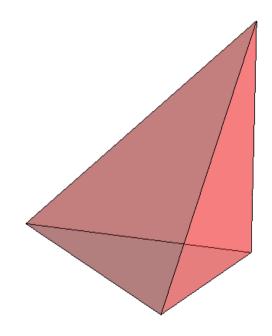


A

"divided" packing constraints (rigidity relaxed)

В

"concurrence" + rigidity constraints

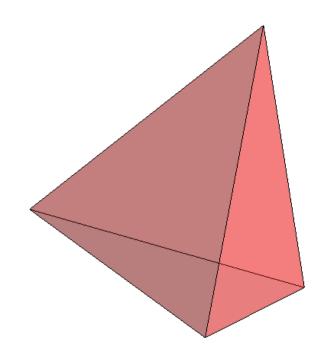


____A

"divided" packing constraints (rigidity relaxed)

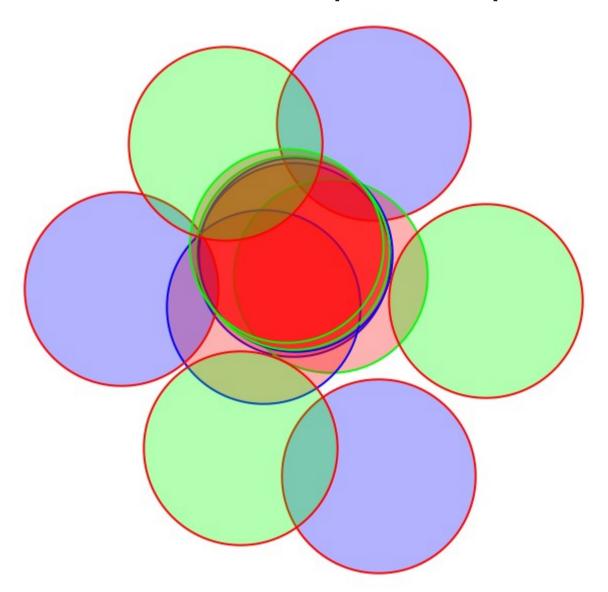
В

"concurrence" + rigidity constraints



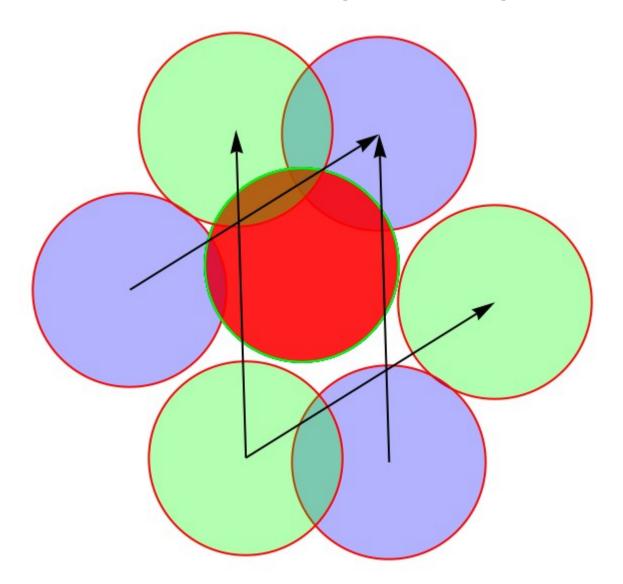
Generalization to periodic packings

replicas -- replicas + periodic images



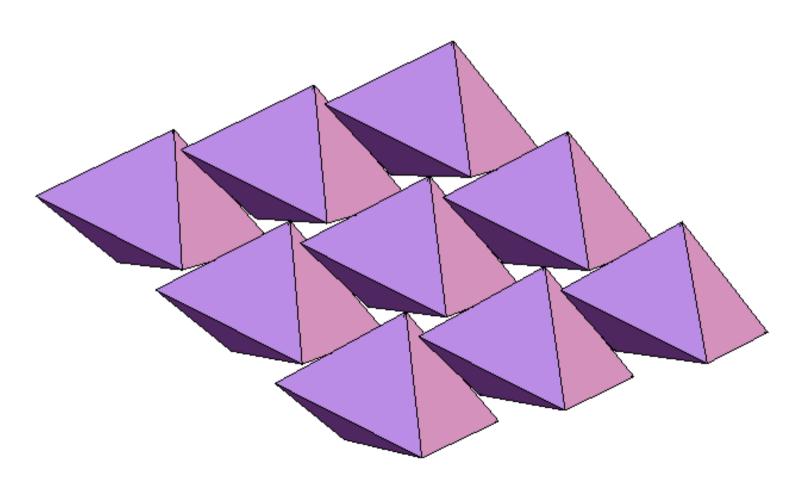
Generalization to periodic packings

replicas -- replicas + periodic images



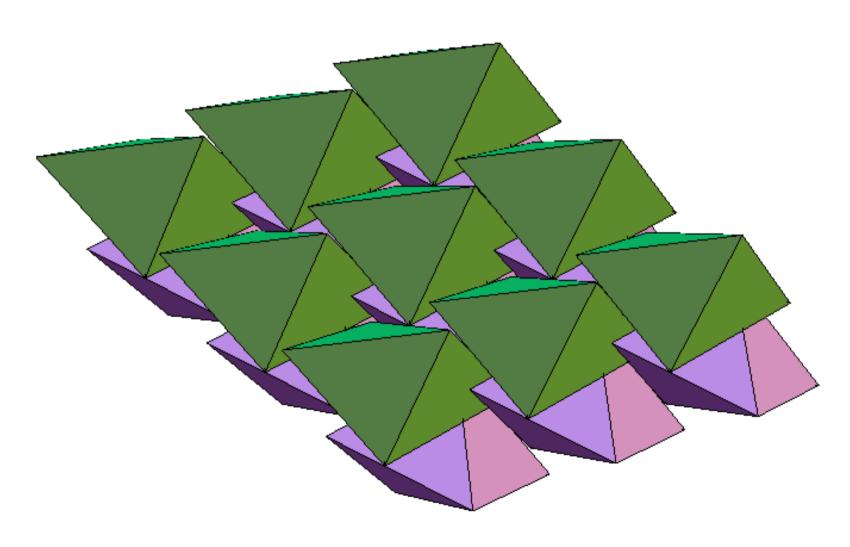
Regular tetrahedron packing

(Stay tuned for next talk)



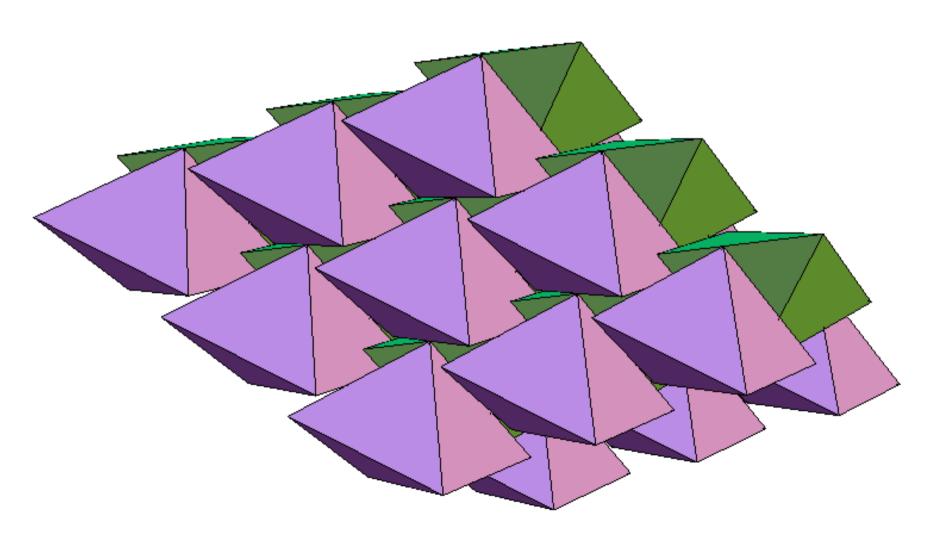
Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010)

Regular tetrahedron packing



Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010)

Regular tetrahedron packing



Kallus, Elser, & Gravel, Disc. Compu. Geom. (2010)

Double-Lattice Packings of Convex Bodies in the Plane

G. Kuperberg¹ and W. Kuperberg² Disc. Compu. Geom. (1990)

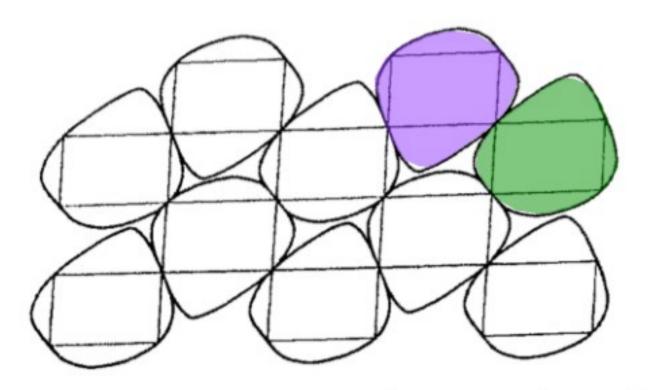


Fig. 4. Double-lattice packing generated by an extensive parallelogram.

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA

² Division of Mathematics, Auburn University, Auburn, AL 36849, USA

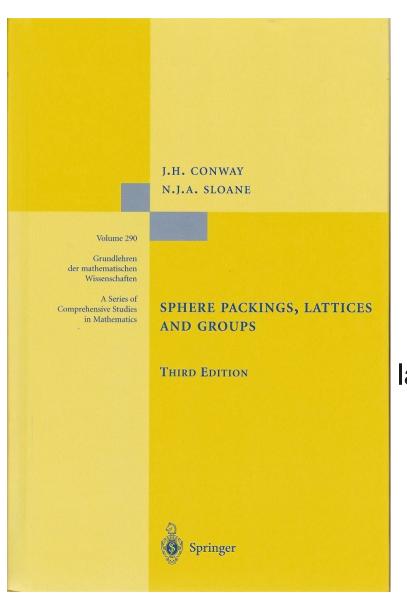
Regular pentatopes!



$$\varphi = 128/219 = 0.5845$$

Kallus, Elser, & Gravel, arXiv: 1003.3301 (2010)

Sphere packing and kissing in higher dimensions



Densest known lattice packing in *d* dimensions:

d	$\Lambda_{\mathrm{densest}}$	$\phi_{\mathrm{densest}}^{(L)}$	$\langle N_{\rm iter} \rangle$
2	A_2	0.90690	42
3	D_3	0.74047	230
4	D_4	0.61685	191
5	D_5	0.46526	308
6	E_6	0.37295	173
7	E_7	0.29530	217
8	E_8	0.25367	99
9	Λ_9	0.14577	161
10	Λ_{10}	0.092021	394
11	K_{11}	0.060432	421
12	K_{12}	0.049454	397
13	K_{13}	0.029208	577
14	Λ_{14}	0.021624	1652

lattice with highest known kissing number in *d* dimensions:

d	$\Lambda_{ m highest}$	$\tau_{ ext{highest}}^{(L)}$	$\langle N_{\mathrm{iter}} \rangle$
2	A_2	6	27
3	D_3	12	54
4	D_4	24	132
5	D_5	40	163
6	E_6	72	225
7	E_7	126	597
8	E_8	240	511
9	Λ_9	272	350
10	Λ_{10}	336	438
11	Λ_{11}	438	549

Kallus, Elser, & Gravel, arXiv: 1003.3301 (2010)

Tetrahedron packing upper bound

Optimization challenge:

- 1. Prove $\phi \le 1 \epsilon$, where $\epsilon > 0$
- 2. Maximize ε

Tetrahedron packing upper bound

Optimization challenge:

- 1. Prove $\phi \le 1 \varepsilon$, where $\varepsilon > 0$
- 2. Maximize ε
- 2'. Minimize length of proof

Solution: $\varepsilon = 5.01... \times 10^{-25}$ (15 pages)