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From Hilbert’s 18th Problem

“How can one arrange most densely in
space an infinite number of equal solids
of a given form, e.g., spheres with given
radii or regular tetrahedra with given
edges, that is, how can one so fit them
together that the ratio of the filled to
the unfilled space may be as large as
possible?”

δ(C ) = optimal packing fraction
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Least Efficient Shapes for Packing
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Ulam’s Conjecture

“Stanislaw Ulam told me in 1972
that he suspected the sphere was the
worst case of dense packing of
identical convex solids, but that this
would be difficult to prove.”

Related conjecture: any
centrally-symmetric convex shape
can be packed using only translations
at a higher density than spheres.
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Sphere packing in R3

Conjecture (Kepler)
Every nonoverlapping arrangement of spheres
in R3 fills at most π/

√
18 = 0.7405 of space.

Computational proof of Kepler’s
conjecture by Thomas Hales.

Involved solving around 100,000
LP problems.
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Computational search in packing

Tetrahedra:

Conway & Torquato conjectured in 2006 that
δ(T ) < δ(B) = 0.7405.
A sequence of numerically discovered structures
(2008–2009) showed that δ(T ) ≥ 0.8563.
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Computational search in packing

Ellipsoids: δ(E ) ≥ δ(B) for ellipsoids of high
enough aspect ratio (Bezdek &
Kuperberg 1991).

Numerically discovered structure
achieves δ(E ) ≥ δ(B) for all ellipsoids
E , and δ(E ) ≥ 0.7707 for all
ellipsoids of high enough aspect ratio
(Donev et al. 2004).
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Packing non-spherical shapes
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Damasceno, Engel, and Glotzer, 2012.



Verification strategy

Space of all shapes
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Local minimality

Theorem (YK)
The 3D sphere is a local minimum of the optimal
translative packing fraction among convex, centrally
symmetric bodies.

In dimensions d = 2, 4, 5, 6, 7, 8, and 24, the sphere is
not a local minimum.
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Reinhardt’s conjecture – previous results

δ(M) = 0.9024

Theorem (V. Ennola, 1961)
For any c.s. planar convex body C ,
δ(C ) ≥ 0.8813.

Theorem (P. P. Tammela, 1970)
δ(C ) ≥ 0.8926.

Theorem (F. Nazarov, 1986)
The smoothed octagon is a local minimum.
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V. Ennola, J. London Math. Soc s1-36 (1961), 135
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Branch and Bound algorithm
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want:
δ(C ) ≥ 0.9204

K0 = {all shapes} 0.71

K1 K2

K1 ∪ K2 = K0
K10.94 0.84

K3 K4

K3 ∪ K4 = K2

0.86

K5 K6

...



Branch and Bound algorithm

To demonstrate that δ(C ) ≥ δ0 for all C ∈ K0.

(1) Seed a stack with an object representing K0.

(2) If the stack is empty, then done.

(3) Else, pop the top object, representing a collection
Ki from the stack.

(4) If it can be shown directly that δ(C ) ≥ δ0 for all
C ∈ Ki , then go to (2).

(5) Else, split Ki = K′ ∪ K′′, and push K′ and K′′ onto
the stack.

(6) Go to (2).
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Node representation

Ki
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Bound setting – minimal body

Cmin =
⋂

C∈Ki

C
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Bound setting – maximal body

⋃
C∈Ki

C
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Bound setting – maximal body

Cmax = conv
⋃

C∈Ki

C
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Bound setting

Because C ⊆ Cmax, and area(C ) ≥ area Cmin,

δ(C ) ≥ δ(Cmax) area(Cmin)

area(Cmax)

for all C ∈ Ki .

O(n) algorithm to compute δ(Cmax).
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Splitting: no new radii
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Splitting: adding a radius
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Results

Recall:

Disks: δ(B) = 0.9069.
Conjecture: δ(C ) ≥ 0.9024 for all C .
Ennola: δ(C ) ≥ 0.8813 for all C .
Tammela: δ(C ) ≥ 0.8926 for all C .

δ0 0.8820 0.8850 0.8870 0.8890
iterations 3.2× 104 3.3× 105 1.8× 106 1.1× 107

δ0 0.8910 0.8930 0.8950 0.8960
iterations 7.1× 107 8.0× 108 3.8× 1010 4.3× 1011
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