Marginal stability in jammed packings: quasicontacts and weak contacts

Yoav Kallus
Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544

Salvatore Torquato
Department of Physics, Princeton University, Princeton, New Jersey 08544
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
Program in Applied and Computational Mathematics,

Princeton University, Princeton, New Jersey 08544 and
Princeton Institute of the Science and Technology of Materials,
Princeton University, Princeton, New Jersey 08544
(Dated: August 22, 2014)

Maximally random jammed (MRJ) sphere packing is a prototypical example of a system naturally
poised at the margin between underconstraint and overconstraint. This marginal stability has
traditionally been understood in terms of isostaticity, the equality of the numbers of mechanical
contacts and degrees of freedom. Quasicontacts, pairs of spheres on the verge of coming in contact,
are irrelevant for static stability, but they come into play when considering dynamic stability, as
does the distribution of contact forces. We show that the effects of marginal dynamic stability, as
manifested in the distributions of quasicontacts and weak contacts, are consequential and nontrivial.
We study these ideas first in the context of MRJ packing of d-dimensional spheres, where we show
that the abundance of quasicontacts grows at a faster rate than that of contacts. We reexamine
a calculation of Jin et al. (Phys. Rev. E 82, 051126, 2010), where quasicontacts were originally
neglected, and we explore the effect of their inclusion in the calculation. This analysis yields an
estimate of the asymptotic behavior of the packing density in high dimensions. We argue that
this estimate should be reinterpreted as a lower bound. The latter part of the paper is devoted
to Bravais lattice packings that possess the minimum number of contacts to maintain mechanical
stability. We show that quasicontacts play an even more important role in these packings. We also
show that jammed lattices are a useful setting for studying the Edwards ensemble, which weights
each mechanically stable configuration equally and does not account for dynamics. This ansatz fails

to predict the power-law distribution of near-zero contact forces, P(f) ~ fe.

PACS numbers: 61.20.-p, 05.65.+b, 61.50.Ah

I. INTRODUCTION

The margin between underconstraint and overcon-
straint in the stability of disordered systems is associ-
ated with many unusual and not completely understood
phenomena, such as glass formation in covalently bonded
materials [I], peaks in computational complexity in NP-
hard problems [2], and critical heterogeneity in mechan-
ical response of elastic networks [3]. Randomly packed
frictionless hard spheres at the jamming transition are
a prototypical example of a system that is driven from
the region of underconstraint just to the edge of over-
constraint. Maximally random jammed (MRJ) packings
are those that exhibit the least order, as measured by
a variety of different order metrics, from the set of all
strictly jammed (mechanically stable) packings [4]. Such
packings are naturally poised at the critical margin with-
out the need to tune parameters. The idea of marginal
constraint in MRJ configurations has long been synony-
mous with isostaticity, the equality between the number
of mechanical contacts between spheres and the number
of translational degrees of freedom [B]. Recently, how-
ever, it has been argued that in addition to marginal
constraint from the point of view of mechanical stabil-
ity, MRJ configurations might also exhibit marginal con-

straint from the point of view of dynamic stability [6] [7].
Mechanical stability reflects the impossibility of reducing
the volume occupied by the system through a continuous
motion of its particles such that the volume does not
increase at any time during the motion [8]. Dynamic
stability reflects the impossibility of reducing the volume
even through motions that cause small rearrangements
in the contact network, and which might at first increase
the volume. Wyart showed that marginal dynamic sta-
bility is associated with power-law distributions of the
gaps between pairs of spheres that are nearly in contact
— called quasicontacts — and of the forces between pairs
of spheres that are in contact, but exert a nearly zero
contact force on each other [6].

In Sections II-III, we will consider MRJ configurations
of frictionless hard spheres in a Euclidean space of d di-
mensions and study the abundance of quasicontacts. Re-
cently, many works have been devoted to identifying the
asymptotic scaling behavior of various densities associ-
ated with MRJ packings and the prejamming dynamics
of hard-sphere fluids in the limit d — oo, and this ques-
tion has lead to many advances in the theory of jam-
ming and the glass transition [9-I4]. We will show that
the abundance of quasicontact, required for reasons of
dynamic stability, imposes strong structural constraints



that are as important as those imposed by the network
of mechanical contacts. The power-law singularities of
active constraints on the verge of becoming inactive and
vice versa are not unique to MRJ packings, and they
arise in other disordered systems [I5]. In Sections IV—
V, we analyze jammed Bravais lattice sphere packings,
which are closely related to MRJ packings.

The dimensional dependence of the number of mechan-
ical contacts around an average sphere can be easily de-
rived from Maxwellian constraint counting: since each
contact is incident on two spheres and imposes one con-
straint, and each sphere has d translational degrees of
freedom, each sphere should have, on average, 2d con-
tacts. Quasicontacts, on the other hand, do not con-
tribute to mechanical stability, but clearly participate in
the trapping behavior as a configuration dynamically ap-
proaches the jamming point. These contacts show up as
a power-law divergence of the pair-correlation function
near the contact distance (historically, this was known as
the “square-root divergence,” but the power-law expo-
nent is no longer agreed to be 1/2) [9] 16l [I7]. Quasicon-
tacts are challenging to study, because unlike mechanical
contacts, identifying specific pairs as quasicontacts re-
quires the definition of an arbitrary cutoff distance [I§]
or another criterion, such as adjacency of Voronoi regions
[19]). Since this divergent part of the pair correlation
overlaps with the well-behaved part, we do not attempt
to identify specific pairs as quasicontacts and only study
the influence of the abundance of pairs at small separa-
tions.

II. QUASICONTACTS IN DISORDERED
PACKINGS

We would like to understand the characteristics of the
quasicontact and weak contact distributions as a func-
tion of dimension. The calculation of Ref. [6] is set in
a fixed number of dimensions but applies equally well in
any dimension. We must only reintroduce the dimen-
sional dependence that was originally left out in order to
determine the expected number of quasicontacts around
the average sphere. Consider an MRJ packing of N unit-
diameter spheres with centersry, k = 1,..., N. Isostatic-
ity guarantees that for any contact (i,7), there exists a
continuous motion Jdry(s) of the sphere centers such that
the distance between the centers of the spheres 7 and j is
1+ s, and the distance between the centers of any other
pair originally in contact remains 1. In the process of
this motion, the work performed by the packing is given
by

poV = fiss— Y full(0rk = 6T1)vang|®
(k1) #(i.5) (1)
= fij8 — Cijs* + o(s?),

where fi; > 0 is the magnitude of the force between k and
[ in the original packing, and (v)tang denotes the compo-
nent of the vector v in the plane tangent to the spheres k

and [ in the original packing [6]. At some value of s = s,
a pair that was previously separated by a gap will come
into contact, and the motion is unphysical beyond this
terminal point. At a value s* ~ f;;/C;;, the volume will
start to decrease beyond its original value. The packing
is considered stable if for every single-contact-breaking
motion, the volume at the terminal point s., is increased
compared to the original volume, i.e., if s. is of the order
of s* or smaller for all contacts. If violated at all, this
stability criterion will be violated by a contact whose
force is of the same order as the weakest contact, and
the gap closed will have a width of the same order as the
smallest gap. We will assume that the average number
of non-contact-neighbor centers at a distance of r = 14+¢&
or less from the center of a randomly chosen sphere is

Zne(§) ~ Ag€' ™7 for 0 < € < 1, (2)

where Ay is the dimension-dependent amplitude of the
quasicontact singularity. Similarly, we assume that the
probability density of the force at a randomly chosen con-
tact is given by

P(f) = f7/(f)* for 0 < f < (f), 3)

where (f) is the average contact force and is proportional
to the externally applied pressure p. Then the smallest
gap is of size roughly such that %N[Z({min) —2d) =1,
and so &min ~ (AdN)’l/(l’V). Similarly, as the total
number of contacts is dN, the weakest contact is roughly
of strength fuin ~ (dN)"YO+H0(f) We assume, as
in Ref. [6], that all single-contact-breaking motions ex-
tend to the entire system, and that each sphere moves
by a distance proportional to s along each coordinate
in a roughly uncorrelated way. We therefore have that
Cij ~ d*N(f), irrespective of the strength of the con-
tact broken. Therefore, for stability, we require that
Se ~ Emin ~ (AgN)"/(=7) be of the same order or
smaller order than s* ~ d~1/(0+0)=2N—-1/(+0)—1  From
the dependence on N, we obtain the inequality derived
in Ref. [6], v > 1/(2+ 9).

Recall that mechanical stability required more con-
tacts than degrees of freedom, and the fact that MRJ
packings lie at the margin between instability and sta-
bility implied that this criterion would be satisfied with
equality. Here, too, we may predict that the inequali-
ties we derive as criteria for dynamical stability will be
satisfied with equality, as a sign of marginal stability.
From the dependence on d, we have that the amplitude
of the quasicontact singularity Ay must increase as d”
with # > (1 —7)(3+20)/(1+6), with equality under the
assumption of marginal stability. If we assume equality
in both cases, we obtain 7 = 2 —~. Note that we assume
that the exponents v and 6 are independent of dimension.
We do not know of any arguments from first principles
that justify this assumption, but it is supported by sim-
ulation results [9, 20], and theoretical calculations in the
limit d — oo [14].

In a later paper, Lerner, Diiring, and Wyart also an-
alyzed the case of contacts that are weak because their



FIG. 1. Calculation of the (expected) volume of the Voronoi region around an arbitrary sphere. The Voronoi region (medium
gray) is the set of all points that are closer to the center of a given sphere than to the center of any other (left). Point A is in
the Voronoi region of the sphere with center O if and only if the (light gray) spherical region centered at A and such that O is
on its boundary has no sphere centers in its interior (right). Since the probability that this region is empty depends only on
the distance ¢ = |AO|, we denote the region by Q(c). The fraction of a spherical surface S (dotted line) of radius r centered at

O that intersects Q(c) (thick line) is denoted by f(3=).

contact-breaking motion does not extend to the entire
system. We address that case in Appendix A, where we
find that o = 2 — ~ also in the case that this type of
contacts dominates. As typical values for the power-law
exponents seem to be not much different from v ~ 0.4
and 0 ~ 0.3 [9] [16], 17], we expect the number of quasi-
contacts to rise much faster as a function of dimension
than the number of contacts does. The mechanical de-
scription of a packing depends only on the force-carrying
contacts, not quasicontacts. However, from a geometric
point of view, contacts and quasicontacts are nearly in-
distinguishable. Therefore, the number of quasicontacts,
not only the number of mechanical contacts, is likely to
be a key determinant of the structure of MRJ packings
in high dimensions.

IIT. EFFECT OF QUASICONTACTS ON
DENSITY

To study the effect of quasicontacts, we will revisit a
calculation of Jin et al. [I2], in which quasicontacts are
originally neglected. Specifically, we will introduce their
presence into the calculation. The original calculation,
presented in Ref. [12], was inspired by an earlier calcu-
lation [21] limited to three dimensions, and derives the
density of a disordered packing in d dimensions based on
the expectation value of the Voronoi region surrounding
an arbitrary sphere. The calculation is based on two as-
sumptions: (i) a simplified form for the pair correlation
function,

z0(r — 1)

o(r) =0~ 1)+ T

(4)

where z = 2d is the average contact number, © is the
Heaviside step function, ¢ is the Dirac delta function,
Sgq—1 is the (d — 1)-dimensional surface area of the unit
sphere, and p = N/V is the number density of the pack-
ing; and (ii) after choosing the origin to be the center of
the sphere whose Voronoi region is to be calculated, the
centers of all other spheres are assumed to be uncorre-
lated with each other, distributed according to a random
process whose radius-dependent density is given by pg(r)
[22]. The two assumptions are motivated by the princi-
ple of decorrelation in high dimensions, which posits that
as the spatial dimension increases, unconstrained spatial
correlations tend to vanish [23]. Indeed, the features of
the pair correlation function away from r = 1 appear to
flatten out as the dimension increases (see, e.g., Figure
7 of Ref. [24]). However, the quasicontact divergence,
which is neglected in the form of g(r) given in re-
mains prominent.

The calculation proceeds by noting that a point at a
distance c¢ from the origin is within the Voronoi region if
and only if the spherical region of radius ¢ surrounding
that point does not contain any sphere centers in its inte-
rior (see [Figure 1] where this region is denoted as (c)).
The assumption (ii) gives rise to the rule that the proba-
bility that a region of space {2 contains no sphere centers
is given by

P(Nq = 0) = exp (—(Na)), (5)

where Ng is the number of sphere centers in €. This
ansatz ignores all correlations between different spheres.
In reality, the hard-core repulsion interaction implies a
negative correlation between different spheres [25], and
SO should be taken as an upper bound in the two-
sided inequality

1—(Ng) < P(Nq =0) <exp(—(Nqa)), (6)



where the left-hand side represents perfect anticorrela-
tion and the right-hand side represents no correlations.
Note that the right-hand side is a particularly poor ap-
proximation of P(Ng() = 0) when 1 < ¢ < /1/3. In
that case, the left-hand side is actually exact, since Q(c)
can contain at most one sphere center.

In the limit of very high dimensions, Jin et al. are
able to show that, given their assumptions, the density
of the packing is given asymptotically by ¢ ~ d¥2~% with
v = 1. Indeed, it has been shown that this density is a
rigorous upper bound for any packing that possesses a
g(r) specified by [23]. In Appendix B, we replace the
assumption (i) with (i) a somewhat less simplified form
for the pair correlation that includes both contacts and
quasicontacts:

z0(r — 1)
pSd—1

~ ()
where Ay ~ d” is the amplitude of the quasicontact sin-
gularity. We show in Appendix B that under this modi-
fied assumption, v = max(1, 7 + v — 1), where the first
argument of the maximum represents the effect of con-
tacts, the second represents the effect of quasicontacts,
and the larger of the two dominates. Since we have seen
that marginal stability implies that 7 = 2 — v, we have
the unexpected result that in marginally stable packings,
neither contacts nor quasicontacts dominate the effect of
the other on the scaling of the density derived in this
calculation.

The presence of quasicontacts does affect the prefac-
tor of the asymptotic form of the density. The calcu-
lation of Jin et al. predicts 2% ~ 1.33d. Using a
value of v = 0.42, the calculation of Appendix B gives
249 ~ (1.33 + 1.00c)d, where Ay ~ cd*>~7. To approx-
imate the magnitude of the added term, we estimate
¢ ~ 3.7 by fitting Ag = cd"58 to values of A4 measured in
numerical simulations in dimensions 3—10 [9]. Therefore,
it appears that the quasicontact contribution is consid-
erably more significant than the contact contribution in
this calculation. It also helps close the large gap that
has been present between the prediction of Jin et al. and
other theoretical predictions that give the same scaling
exponent but a much larger prefactor, such as the pre-
diction 2%y, ~ 6.26d of Ref. [I1]. Note that in cases
in which the dynamic stability criteria of are
satisfied with inequality rather than equality, quasicon-
tacts are predicted to dominate. Note also that if the
assumption (ii) is reinterpreted as an upper bound as in
then the calculated density can be seen as a lower
bound, v > max(1, 7 +v — 1).

g(r)=06(r-1) (1 + (1 =) Aa(r — 1)7> N

pSg_1rd—1

IV. QUASICONTACTS IN LATTICE PACKINGS

While the presence of quasicontacts turns out not nec-
essarily to affect the asymptotic scaling exponent of the
density in MRJ packings, we show next that it does likely

have an effect in marginally stable jammed Bravais lattice
packings. Bravais lattice packings are periodic packings
of spheres with one sphere per unit cell. Recently, we
explored an ensemble of jammed (mechanically stable)
Bravais lattices generated by a sequence of compressions
in dimensions d = 15—24 [20] 26| 27]. Almost all of these
lattices were found to possess the bare minimum number
of contacts required for mechanical stability of a Bravais
lattice, namely z = d(d + 1), and the pair correlation
and force distribution of these jammed lattices exhibited
power-law tails. These findings suggest that these lat-
tices are marginally stable with respect to both static
and dynamics stability, and should therefore be regarded
as an analog of MRJ packings in the context of Bravais
lattices. Bravais lattices with the minimal contact num-
ber z = d(d+1) are hyperstatic, since z > 2d, and indeed
they can remain mechanically stable even after an exten-
sive number of contact constraints are relaxed. However,
if any contact constraint is relaxed together with all of
its periodic images, then the system loses its mechanical
stability. Therefore, with the idea of considering a single
unit cell as our system and the removal of one constraint
entailing the removal of its images in all other unit cells,
we will refer to these lattices as isostatic in this specific
context, despite the fact that the packing as a whole is
hyperstatic [20].

The power-law tails of the pair correlation and force
distribution function were found to have dimensionally-
independent exponents v = 0.314+0.004 and § = 0.371+
0.010 respectively, and The prefactor of the quasicontact
singularity was found to grow as a power law Ay ~ d”,
with 7 = 3.30 £ 0.05 [20]. Before considering the effect
of quasicontacts on the typical density of these lattices,
we begin by translating the calculation of Ref. [6] to the
context of Bravais lattices in order to derive a stability
criterion in terms of the exponents ~, 8, and v.

The problem of lattice sphere packing can be formu-
lated as the problem of determining a symmetric, posi-
tive definite matrix G of minimal determinant, such that
(n,Gn) > 1 for all nonzero integer vectors n € Z? [2§].
The centers of the spheres then take the positions Mn,
where M is some matrix such that G = MTM, and the
density is ¢ = 227945, 1 (det G) /2. The jammed pack-
ings occur as locally optimal solutions of this optimiza-
tion problem, and such lattices are known as extreme
lattices [29]. The minimum number of contacts in an
extreme lattice is d(d + 1), corresponding to equality be-
tween the number of degrees of freedom in G, 1d(d + 1),
and the number of active constraints (the constraints
(n,Gn) > 1 and (—n,G(—n)) > 1 are equivalent) [29].
Extreme lattices with this minimum contact number are
called isostatic lattices [20] or minimally extreme lattices
[30]. We label a set of integer vectors responsible for all
inequivalent contacts as ng, k =1,...,d(d+ 1)/2. From
the method of Lagrange multipliers we have that at a
local minimum

(det G)G™! = kanknf7 (8)



where the contact forces f; are positive.
force is (f) = 2(det G)/(d + 1) [20].

For any contact n; in a minimally extreme lattice, there
is a motion 0G;(s) = sGY, such that (ng, dG;(s)n;) =
sd;p for all Kk = 1,...,d(d + 1)/2. This motion can
continue until at some s., there is an integer vector n.
that does not correspond to an original contact and be-
comes a contact (n., (G + sG})n.) = 1. The identity

det(1+ X) = exp(>_ne, % tr X™) allows us to ex-

n=

pand the determinant of G + sG as a power series:

The average

det(G + sG) 1w
ik Sl Ml P t ,
dot G TG 9)
+5 [(r GG~ tr GGG + o(s?).

We use to obtain
(det G)(tr GT'G}) = fulng, Giny) = fi,
k

(det G)2(tr GT'GIGTIGY) = > f fu(ny, Gimy)?.

Jik

Therefore, the change in the determinant of G along the
single-contact-breaking motion is given by d(detG) =
fis — Cis? + o(s?), where

o 1 . al 2
C; = QthGj;chanJ,Gink} : (10)

The typical magnitude of C; is given by C; ~
d*(det G)~1(f)2. For stability, we need s., the maximum
physical extent of the motion associated with breaking a
contact carrying a force of the order of the weakest force,
to be smaller than the extent s* for which d(det G) = 0.
Since we have ~ d? contacts, the smallest force is typ-
ically fuin ~ d=2/0F0(f) where (f) ~ (detG)/d. If
the average number of non-contact lattice points at a
distance less than r = 1 + £ is Zu.(§) = Ag&t~7 for
0 < & < 1, then the width of the smallest gap is of order
Emin ~ A;l/(lfv) ~ d=7/(1=7) " Therefore, for stability
we require that s* ~ (d=2/0FO(f))/(d*(f)?(det G)~1) ~
d®+30)/(1+9) be of the same order or larger order than
d=7/(1=7) We have stability if # > (1—v)(5+36)/(1+6),
and marginal stability in the case of equality. This in-
equality appears to be satisfied and nearly saturated
based on the values of the exponents derived from nu-
merical simulations in dimensions d = 15 — 24: v =
3.30 £ 0.05, v = 0.314 £ 0.004, 6 = 0.371 £ 0.010 and
(1—=)(5+30)/(1+6)=3.06+0.02.

Since the principle of decorrelation applies also to lat-
tice configurations [20} [3T], the assumptions of the cal-
culation of Jin et al. should apply for lattices in high
dimensions to the same extent that they do for MRJ
packings. For lattices with the minimum number of con-
tacts required for mechanical stability, the contact num-
ber is z = d(d + 1). Therefore the calculation yields
the density estimate (or lower bound, if the second as-
sumption is interpreted as a bound) ¢ ~ d”27¢ where
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FIG. 2. Red circles: densities of disordered jammed packings
as a function of dimension from Ref. [9]. Blue crosses: den-
sities of jammed Bravais lattice packings from Ref. [20]. The
black lines illustrate the scaling exponent predicted as a lower
bound by the calculation of Appendix B.

FI

FIG. 3. The distribution of contact forces over all contacts
of all minimally extreme eight-dimensional lattices (green tri-
angles) and in the 200 densest lattices (purple circles). The
line shows the best fit truncated Gaussian as a guide for the
eye.

v = max(2,0 + v — 1) =~ 2.61. In this case the second
term of the maximum dominates and the quasicontact
abundance is predicted to have a significant effect on the
asymptotic scaling of the density. However, as we ob-
serve in Appendix B, the effect of quasicontacts is only
expected to dominate the effect of contacts in relatively
high dimensions. The calculation suggests that the for-
mer overtakes the latter around d =~ 5000, much higher
than the dimensions explored thus far in simulations.
With this observation in mind, we should be careful in



using low-dimensional data to extract high-dimensional
scaling. However, it seems clear from the data that the
densities of both MRJ packings and jammed Bravais lat-
tice packings increase at a much higher rate than pre-
dicted by our calculation (see . It is reasonable
to conclude that the assumption (ii) neglects important
anti-correlations in these packings. Nevertheless, the in-
terpretation of our calculation as a lower bound is sound,
since it is not expected that a less simplified approxima-
tion of g(r) than that of assumption (i) would yield a
dramatic decrease in the predicted density.

V. BREAKDOWN OF THE EDWARDS
ENSEMBLE ANSATZ

Jammed lattice packings also provide a useful system
for studying Edwards statistical mechanics. Edwards
proposed to investigate granular materials by consider-
ing ensembles that bear a formal resemblance to classical
thermodynamic ensembles but replace energy conserva-
tion with volume conservation [32]. The Edwards canon-
ical ensemble gives a weight proportional to exp(—XV)
to any mechanically stable configuration occupying a vol-
ume V and zero weight to non-stable configurations. The
compactivity X takes the role of inverse-temperature in
the classical canonical ensemble. For the case of lattices,
the mechanically stable configurations correspond to ex-
treme lattices. Voronoi proposed an algorithm to com-
pletely enumerate perfect lattices, a superset of extreme
lattices, in a given dimension, and this full enumeration
has been performed in dimensions up to d = 8 [33]. In
eight dimensions, there are 10,916 perfect lattices, out of
which 858 are minimally extreme [34]. We can therefore
study the Edwards ensemble exactly for d = 8. We focus
on the distribution of contact forces, since the distribu-
tion of gaps is still far from continuous for d = 8. In
we show the distribution of contact forces in
the Edwards ensemble for zero compactivity. Note that
there appears to be a finite probability density at f = 0,
in contrast with the expected power-law behavior. We
suspect that this is not only the case for zero compactiv-
ity, but unfortunately the available sample in d = 8 is not
large enough to discern a clear-cut violation of the power-
law behavior for compactivities large enough so that only
a small part of the sample has statistical weight. How-
ever, we note that the violation appears to persist even
when looking at only the 200 densest minimally extreme
lattices, but the statistical significance is much lower due
to larger fluctuations.

VI. CONCLUSION

In this paper we have investigated from a few different
directions the power-law singularities of the pair corre-
lation function near the contact distance and of contact
force probability density near zero force. These singulari-

ties arise in MRJ packings and in their recently identified
relatives, jammed Bravais lattice packings. In both cases,
they appear to be signatures of the fact that these con-
figurations lie at the margin between overconstraint and
underconstraint in terms of dynamic stability, much like
isostaticity is related to marginal mechanical stability.
As we have seen in the case of Bravais lattice packings,
power-law tails in the distributions of active constraints
on the verge of becoming inactive and vice versa might
also arise in other scenarios in which cost is minimized in
a quenched frustrated system subject to many competing
inequality constraints.

We showed that quasicontacts, the pairs of spheres con-
tributing to the power-law singularity in the pair cor-
relation function, become much more abundant at high
dimensions than actual contacts. Since from a geomet-
ric, rather than a mechanical, perspective, quasicontacts
can be nearly indistinguishable from contacts, they could
have a significant effect on the geometric structure of
MRJ packings in high dimension. Indeed, we show that
a calculation of the density based on a simplified model
of correlations predicts that contacts and quasicontacts
both contribute to the leading term of the asymptotic
dependence of the density on dimension, which is cal-
culated to be ¢ ~ d”2~%, with v = 1. In fact, it seems
that the contribution due to quasicontacts is significantly
larger than that due to contacts. Moreover, in the case
of Bravais lattices, the calculation predicts that the qua-
sicontact contribution dominates asymptotically.

Finally, we showed that in the case of Bravais lattices
of dimensions not too high, it is possible to directly study
the Edwards ensemble. We considered the distribution of
contact forces in the Edwards ensemble of Bravais lattices
in d = 8, but we were unable to reproduce a power-law
behavior for near-zero forces. As we have argued, the
power-law behavior of weak contacts and quasicontacts
is a consequence of dynamic effects, an end product of
an unstable system driven out of equilibrium to the edge
of stability, and we should not be surprised that a the-
ory based on equilibrium methods positing only static
stability does not reproduce it.
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Appendix A

In the main text we considered the stability of a dis-
ordered packing with respect to motions that break a



weak contact and extend to the entire packing. In Ref.
[7], the authors demonstrated the existence of contacts
that lead to localized contact-breaking motions and claim
that such contacts dominate the distribution of weak-
est contacts. As we showed in the main text, the con-
tact force f;; is identified with the first-order derivative
lim,_,o pdV (s)/s of the rate of work done upon opening
the contact into a gap of width s, maintaining all other
contacts. Lerner et al. decomposed the contact force
fi; = bijw;; into two factors: b;; measures how strongly
the contact-breaking motion couples to the bulk, i.e., the
extent to which a typical sphere in the packing moves in
proportion to s; w;; measures how much the bulk mo-
tion tends to increase the volume of the packing, i.e.,
how strongly it is coupled to the movement of spheres at
the boundary in the direction orthogonal to the bound-
ary. The case treated in the main text corresponds to
the case in which the weak contact distribution is dom-
inated by contacts with b;; ~ 1 and w;; is distributed
according to P(w) ~ w?. In this appendix we treat the
case in which w;; ~ 1 and b;; is distributed according to
P(b) ~ 1P,

While spheres in the bulk move by distances ~ bs,
where b < N~=1/2, the number of spheres that move by
distances ~ s does not increase with the system size.
However, because the average number of contacts around
a sphere is 2d, the number of spheres involved in the
localized motion will increase with dimension as ~ d.
Since the gap whose closing defines the physical extent
s¢ of the motion is likely to be far away from the contact
being opened, we have sc ~ &min/bij ~ &min/(fij/(f)),
where &pin ~ (AdN)_l/(l_'Y) is the smallest gap in the
packing. Meanwhile, C;; = lim_,o Z(w)#i,j) Sril|(Org—
6T )tangl|?/s?, the coefficient that controls the second-
order change in volume, is dominated by the ~ d spheres
involved in the localized motion, which move a distance
~ s. Therefore, the typical value of C;; for these con-
tacts is ~ d(f) and s* ~ f;;/Cij ~ d='(f;;/(f)). For
contact forces of the same order as the weakest con-
tact, fmin ~ (dN)~V(+9 stability requires that s, ~
d—7/(A=7)+1/(140) y—1/(1=7)+1/(14+0) he of the same or-
der or smaller order than s* ~ d—'—1/(+0)N1/(1+0)
The conclusion is that the criteria for stability are v >
(1-60)/2and v > (1 —7)(3+6)/(1 +0). If we assume
equality in both cases, we obtain 7 = 2 — . Therefore,
no matter which kind of contacts dominate the distribu-
tion of weakest contacts, we obtain the same prediction
for the exponent controlling the dimensional growth of
the abundance of quasicontacts.

Appendix B

In this appendix, we derive an asymptotic expression
for the density of an MRJ packing in the limit of high
dimensions by calculating the expected volume of the
Voronoi region associated with a typical sphere in the
packing. The calculation is based on two assumptions:

(i) a simplified form for the pair correlation that
includes terms corresponding to contacts, quasicontacts,
and bulk spheres, and (ii) a lack of significant correla-
tions between spheres other than the pair correlations
involving the central sphere whose Voronoi volume is be-
ing calculated. This latter assumption is expressed by
the ansatz|(5), which can alternatively be interpreted as
a bound |(6)|

The expected volume of the Voronoi region is given by

1 279541 > d—1
p- =) = — + Sq—1¢" " P(c)de,

(B1)
where P(c) is the probability that a point at a distance
¢ from the origin is inside the Voronoi region. Note
that simply reflects the additivity of the expecta-
tion value of the volume of intersection of the Voronoi
region with any region of space, regardless of correla-
tions. Therefore, it is exact in every dimension, provided
a correct form of the function P(c).

We use assumption (i) to give an approximation of
P(c), the probability that the region (c) contains no

sphere centers (see [Figure 1)):
P(c) = exp(—(No(c)))

2c
— exp (— / rd-lpgmsdlf(;gdr) ,

=1

(B2)

where Q(c) is a spherical region of radius ¢ whose center
is a distance ¢ from the origin, and 0 < f(QLC) < 1is
the fraction of a spherical surface of radius r centered at
the origin that intersects 2(c). The fraction f(x) of the
sphere at a latitude of less than arccosx from the pole is
given by the integral

fla) = a2 /1 (1—) 7 at.

Sd— 1 t=x

(B3)

We may decompose P(c) = Pg(c)Pc(c)Pg(c) into in-
dependent terms corresponding to spheres in the bulk,
contacts, and quasicontacts respectively. We have

2c
1ogPB(c):_psd,1/ r U f (£ )dr

=1
0 ' N2 ad d
— 28, , (1) % (4%t — 1)dt
t=1/2c

= —BSua e — (1= 5)
-1

cSq_o d

+ @51 - =) 2 — f(5));

(B4)
log Pe(c) = = (1) (B5)

and
log Po©) = ~(1=Aa [ (=17 F G oo



ho(z) = Sa2 /1 (142)%(5 —1)dt. (BY)

Sa—1

Note that f(z) = hy(z).
We let w = (29p)~! = d/(pS4_1) and obtain the equa-
tion which determines w implicitly,

1=2"44d /OO e G g
w w [ 1
? (B8)
. L *U+H 1/dy,1/d, w)
v / . dy,
y= T
where
H(e;w) = ff(l_ Ly e L)%
T w 2¢47 (d — DwSg_1 Ac?
+ (& — 2)f(55) — Adhy(55)-

(B9)
For large d, we expect that 27¢/w — 0 and we may
write fyoio e Vel (yV/dw'/ 4 w)dy ~ 1. Using the fact
that H(c;w) behaves nicely, we conclude that w is such
that H(y'/4w'/?;w) ~ 0 when y ~ 1.

We now turn to the task of approximating the func-
tions h. () and f(z) = hi(xz) whend > land z € 1. We

write (1—t2) e as 9453 exp(log(1—t?)) and use Laplace’s
method by expanding the argument of the exponential
function about the point where it takes its largest value
in the integration domain, which in this case is the lower
bound t = z:

2

2\ 2 T
log(l—t)mlog(l—m)—1—1_|_m2
5 (B10)
S e PP ()
(1—2a2)? 1+ a2

1
If we let s = (d—3) (1+22)2(t—
an integral of the form

7)/(1—2?), we obtain

d—3
Sd72(1 _ x2)?+2*7

hV(x) ~ 2—y 2—y
Sa-1(d—=3) 2 (1+2?) 2 27 (B11)
S5 [ (s+s0)’ 1
X e 2 e 2 s ds,
s=0

where sp = (d— 3)%:ﬂ/(1 +x2)%. The last integral can be
asymptotically expanded in powers of 1/s¢ by performing
a change of variables, expanding the resulting binomials,
and integrating term by term. We only require the first
term of the expansion:

i oo
e 2 e

0o Sg
Sl A R
u=0

oo s2
%sg_v/ 6770“(%11)1 Ydu = s37°T(2 — )
u

Gts)?
2 s ds

N

1—v 1
- 1) (14+wu) 2du

Q

=0
(B12)
We therefore obtain the asymptotic forms for h,(z) and
f(@) = ha(2):
Sy oT(2—)(1 —22) %
d—2 —)u-x
~ B1
hV(x) Sd—l(d _ 3)27Vx3*27 ( 3)
Suo(1— 2T
d—2\1—@
2 B14
)~ M (B14)

The latter of these agrees with the asymptotic form
derived in Ref. [I2]. Finally, then, we have that

H(w'/%w) ~ 0, when

1 d—3
) _2*2d_2+1—wz

—w~d

i X _g)(2 ;)2 2y (B15)
— =w d wd )
—wAGT(2 — 4 ~ 0.
wAqg ( ’Y) (d_3)1_’y

So if Ag ~ d” and z ~ d“z, then w ~ d~Y, where
v = max(v,, U + v — 1). If the first argument of the
maximum dominates we have ¢ = 279 /w ~ 279(22/3),
and if the second dominates we have ¢ ~ 27¢(21=27T'(2—
’)/)Add’yil).

For jammed minimally extreme Bravais lattices, where
z = d(d + 1), numerical data for d = 15 — 24 sug-
gests that Ay ~ (1.43 x 1073)d33% and v ~ 0.314.
These values imply that in the limit of high dimensions,
the density estimate given by this calculation is domi-
nated by the effect of quabicontactb However, note that
2172 0(2 — ) Agd L > z only when d > 5000. For
lower dimensions, the eﬁect of contacts dominates or the
two effects are comparable.
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