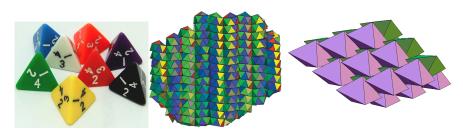
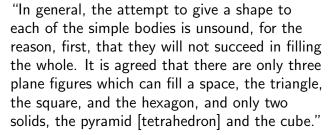
Packing problems: complex structure from simple interactions



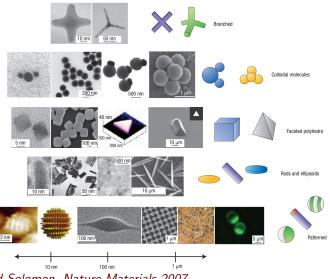
Yoav Kallus Santa Fe Institute February, 2017

The long history of packing problems



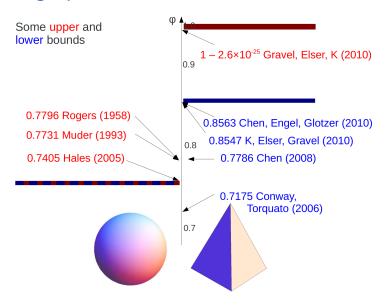
- Aristotle. On the Heavens, volume III

Building blocks by design

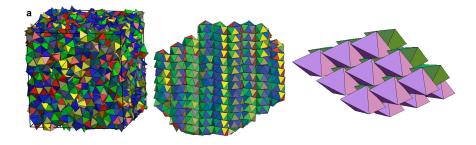


Glotzer and Solomon, Nature Materials 2007

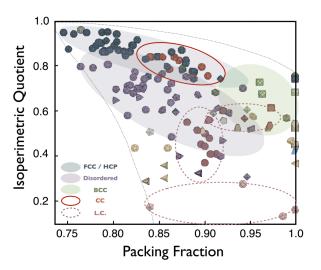
Packing spheres vs. tetrahedra



Emergent structure in tetrahedron packing



Packing convex shapes



Ulam's conjecture: balls are worst among convex shapes

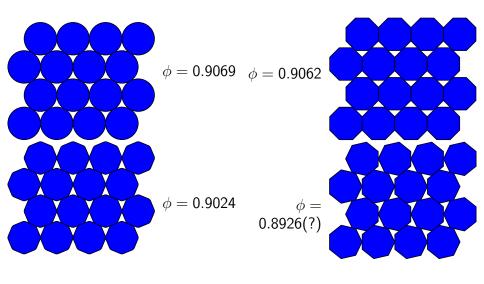
Worst packing shapes

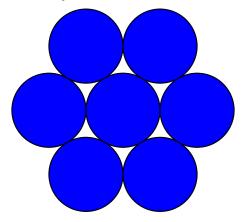
Best packing shapes are trivial

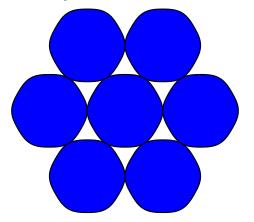
Worst packing shapes

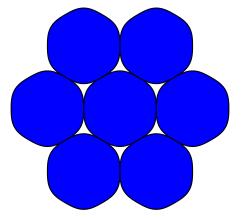
Best packing shapes are trivial

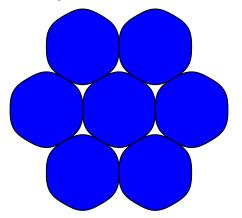
In 2D disks are not worst





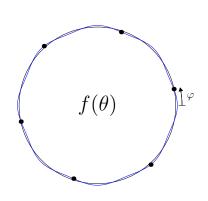




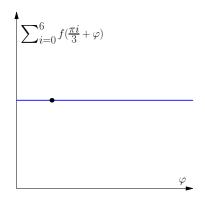


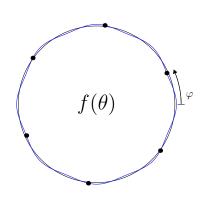
To first order:

 $\Delta(\text{vol. per particle}) \propto \text{avg. deformation in contact dirs.}$ $\Delta(\text{vol. of particle}) \propto \text{avg. deformation in all dirs.}$ Can only break even, and make up in higher orders

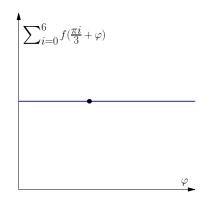


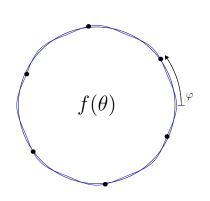
$$f(\theta) = 1 + \epsilon \cos(8\theta)$$





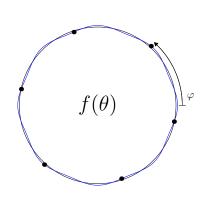
$$f(\theta) = 1 + \epsilon cos(8\theta)$$





$$\sum_{i=0}^{6} f(\frac{\pi i}{3} + \varphi)$$
 φ

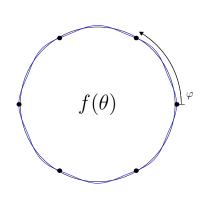
$$f(\theta) = 1 + \epsilon \cos(8\theta)$$



$$\sum_{i=0}^{6} f(\frac{\pi i}{3} + \varphi)$$

$$\varphi$$

$$f(\theta) = 1 + \epsilon \cos(8\theta)$$



$$\sum_{i=0}^{6} f(\frac{\pi i}{3} + \varphi)$$

$$\varphi$$

$$f(\theta) = 1 + \epsilon \cos(8\theta)$$

Why can we not improve over spheres?

Let \mathbf{x}_i , i = 1, ..., 12, be the twelve contact points on the sphere in the f.c.c. packing.

Lemma

Let f be an even function $S^2 \to \mathbb{R}$. $\sum_{i=1}^{12} f(R\mathbf{x}_i)$ is independent of $R \in SO(3)$ if and only if the expansion of $f(\mathbf{x})$ in spherical harmonics terminates at I = 2.

K. Adv Math 2014

Why can we not improve over spheres?

Let \mathbf{x}_i , i = 1, ..., 12, be the twelve contact points on the sphere in the f.c.c. packing.

Lemma

Let f be an even function $S^2 \to \mathbb{R}$. $\sum_{i=1}^{12} f(R\mathbf{x}_i)$ is independent of $R \in SO(3)$ if and only if the expansion of $f(\mathbf{x})$ in spherical

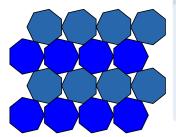
harmonics terminates at l=2.

Theorem (K)

The sphere is a local minimum of ϕ , the packing density, among convex, centrally symmetric bodies.

K, Adv Math 2014

Heptagons are locally worst packing (?)



0.8926(?)

Theorem (K)

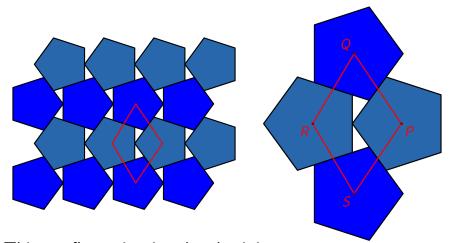
Any convex body sufficiently close to the regular heptagon can be packed at a filling fraction at least that of the "double lattice" packing of regular heptagons.

It is not proven, but highly likely, that the "double lattice" packing is the densest packing of regular heptagons.

Local optimality of the double lattice

Work with Wöden Kusner (TU Graz) 0.9213 = 0.8926

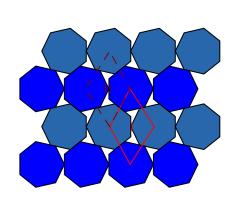
Pentagons

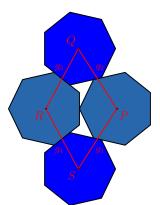


This configuration is a local minimum among nonoverlapping configurations of area(SPQR).

K and Kusner, Discrete Comput. Geom. 2016

Heptagons

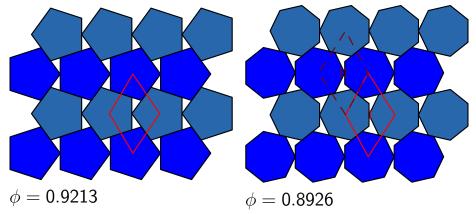




This is not a local minimum of $\operatorname{area}(SPQR)$. But it is a local minimum of $\operatorname{area}(SPQR) + \sum_{i=1}^4 g_i$, where g_i are such that, e.g., $g_3^{(I)} + g_3^{(II)} = 0$.

K and Kusner, Discrete Comput. Geom. 2016

Local optimality of the double lattice



The same method works for (almost) any convex polygon and shows the "double lattice" construction gives locally optimal packings.

K and Kusner, Discrete Comput. Geom. 2016