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Packing non-spherical shapes
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Damasceno, Engel, and Glotzer, 2012, unpublished.



The Miser’s Problem

A miser is required by a contract to
deliver a chest filled with gold bars,
arranged as densely as possible. The
bars must be identical, convex, and
much smaller than the chest. What
shape of bar should the miser cast so as
to part with as little gold as possible?
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Ulam’s Conjecture

“Stanislaw Ulam told me in 1972
that he suspected the sphere was the
worst case of dense packing of
identical convex solids, but that this
would be difficult to prove.”

Naive motivation: sphere is the least free solid (three
degrees of freedom vs. six for most solids).
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Ulam’s Last Conjecture

“Stanislaw Ulam told me in 1972
that he suspected the sphere was the
worst case of dense packing of
identical convex solids, but that this
would be difficult to prove.”

Naive motivation: sphere is the least free solid (three
degrees of freedom vs. six for most solids).
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In 2D disks are not worst

0.9069

0.9024

0.8926(?)
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Why can we improve over circles?
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Why can we improve over circles?

f(θ)
ϕ

ϕ

∑6

i=0
f (πi3 + ϕ)

f (θ) = 1 + εcos(8θ)
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Why can we not improve over spheres?

Lemma
Let f be an even function S2 → R.∑12

i=1 f (Rxi) is independent of R if and only
if the expansion of f (x) in spherical
harmonics terminates at l = 2.

Theorem (YK, F. Nazarov)
The sphere is a local minimum of the optimal
packing fraction among convex, centrally
symmetric bodies.
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Reinhardt’s conjecture

0.9024

Conjecture (K. Reinhardt, 1934)
The smoothed octagon is an
absolute minimum of the optimal
packing fraction among convex,
centrally symmetric bodies.

Theorem (F. Nazarov, 1986)
The smoothed octagon is a local
minimum.
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K. Reinhardt, Abh. Math. Sem., Hamburg, Hansischer Universität, Hamburg 10
(1934), 216
F. Nazarov, J. Soviet Math. 43 (1988), 2687



Regular heptagon is locally worst packing

0.8926(?)

Theorem (YK)
Any convex body sufficiently close to
the regular heptagon can be packed
at a filling fraction at least that of
the “double lattice” packing of
regular heptagons.

Note: it is not proven, but highly
likely, that the “double lattice”
packing is the densest packing of
regular heptagons.

Y. Kallus (Princeton) Worst Packing Shapes NEGW 06/07/2013 11 / 12

YK, arXiv:1305.0289



Regular heptagon is locally worst packing

0.8926(?)

Theorem (YK)
Any convex body sufficiently close to
the regular heptagon can be packed
at a filling fraction at least that of
the “double lattice” packing of
regular heptagons.

Conjecture
The regular heptagon is an absolute
minimum of the optimal packing
fraction among convex bodies.

Y. Kallus (Princeton) Worst Packing Shapes NEGW 06/07/2013 11 / 12

YK, arXiv:1305.0289



Summary of new results

In d = 2, the heptagon is a local minimum of the
optimal packing fraction, assuming the “double
lattice” packing of heptagons is their densest
packing. The disk is not a local minimum.

In d = 3, the ball is a local minimum among
centrally symmetric bodies.

In higher dimensions, at least with respect to
Bravais lattice packing of centrally symmetric
bodies, the ball is not a local minimum.
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Backup slides follow
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Extreme Lattices

A lattice Λ is extreme if and only if
||Tx|| ≥ ||x|| for all x ∈ S(Λ) =⇒
det T > 1 for T ≈ 1.

Contact points
S(Λ) of the
optimal lattice.

In d = 6, 7, 8, 24, the optimal lattice is
redundantly extreme, and so the ball is
reducible.
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d = 4 and d = 5

In d = 4, 5, if ||Tx|| ≥ ||x|| for all
x ∈ S(Λ) \ {x0}, and
||Tx0|| > (1− ε)||x0||, then
1− det T < C ε2 (compared with C ε for
d = 2, 3).

1− ǫ

(ρ(K )− ρ(B))/ρ(B) ∼ ε2

(V (B)− V (K ))/V (B) ∼ ε

The ball is not a local minimum of the
optimal packing fraction.
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