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Paradoxes in leaky microbial trade

Yoav Kallus® !, John H. Miller"? & Eric Libby'

Microbes produce metabolic resources that are important for cell growth yet leak into the
environment. Other microbes can use these resources, adjust their own metabolic production
accordingly, and alter the resources available for others. We analyze a model in which
metabolite concentrations, production regulation, and population frequencies coevolve in the
simple case of two cell types producing two metabolites. We identify three paradoxes where
changes that should intuitively benefit a cell type actually harm it. For example, a cell type can
become more efficient at producing a metabolite and its relative frequency can decrease—or
alternatively the total population growth rate can decrease. Another paradox occurs when a
cell type manipulates its counterpart’s production so as to maximize its own instantaneous
growth rate, only to achieve a lower final growth rate than had it not manipulated. These
paradoxes highlight the complex and counterintuitive dynamics that emerge in simple
microbial economies.

TSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA. 2 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
Correspondence and requests for materials should be addressed to E.L. (email: elibby@santafe.edu)

NATURE COMMUNICATIONS | 8:1361 | DOI: 10.1038/541467-017-01628-8 | www.nature.com/naturecommunications


http://orcid.org/0000-0002-1968-4671
http://orcid.org/0000-0002-1968-4671
http://orcid.org/0000-0002-1968-4671
http://orcid.org/0000-0002-1968-4671
http://orcid.org/0000-0002-1968-4671
mailto:elibby@santafe.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

icrobes live in complex communities where goods such

as metabolites are produced and exchanged'™. As

goods flow in and out of cells, a type of economy
emerges™ ©. In this economy, each organism faces decisions
concerning which goods to produce and in what quantities’.
These production decisions ultimately determine the relative
abundance of each organism since more successful individuals
will grow faster and increase in frequency. As populations change,
the economic conditions can change and put pressure on
organisms to adjust their production®. In this paper, we investi-
gate this interplay between population-level dynamics and
individual-level production decisions and uncover paradoxical
system-level behaviors.

Microbes exchange goods directly or indirectly®. Direct
mechanisms, such as intercellular nanotubes’ or cell-cell recog-
nition systems®, allow microbes to target goods towards specific
partners, thereby facilitating successful trading relationships. In
contrast, indirect exchange typically relies on the diffusion of
molecules through the extracellular environment® 1°. Some goods
are produced and secreted because their primary function occurs
extracellularly. One classic example is a siderophore that binds
extracellular iron and allows it to be imported into the cell'l.
Other goods diffuse out of cells through inherently permeable cell
membranes®. Metabolic by-products and electron carriers are
examples of these kinds of leaked goods® 2. Once such goods are
in the environment, they can be used to inform individual pro-
duction strategies. Here, we focus exclusively on indirect
exchange of goods via diffusion.

Even if we consider only indirect exchange of diffusible goods,
there is a great diversity of the types of exchange depending on
the environmental and ecological context, the number of organ-
isms and goods, as well as the costs and benefits of the goods'® 13,
We narrow our scope by considering only interactions between
two organisms involving two goods. This excludes well-studied
systems of trade such as the mutualism between mycorrhizal
fungi and plants in which many different organisms may be
trading simultaneously!® !°. Furthermore, we only consider
goods that are costly to make and are beneficial to at least one
organism. Thus, we do not consider punitive goods such as toxins
or antibiotics. We find it useful to classify goods in terms of which
organisms produce them and which organisms benefit from their
consumption. Using this approach, Table 1 shows three canonical
types of exchange. For each good, we denote which organism
produces it (p) and which organism consumes it (c). The three
types of exchange do not represent an exhaustive classification,
but rather provide a way of comparing exchange interactions that
have received significant attention in previous studies.

The first category is mutualism, where each organism produces
a good that the other one consumes. This type of relationship can
represent syntrophy'* 16, cross-feeding!”, auxotrophy?, or a two-
way by-product mutualism'® !°. Since each organism does not
consume the good that they produce, the goods are
by-products of other processes. This means that the optimal
amount of the by-product to produce depends on the costs and
benefits of the other, more primary processes, as well as how

much benefit is derived from the good produced by the other
organism!” % 20 In instances where each good produced is
growth-limiting to the other organism, there is a positive feed-
back loop so that each organism does its best by producing as
much of their good as possible, so long as it does not interfere
with other cell functions. One common result of these syntrophic
exchanges is a synergy between organisms, where the combined
communi‘? has enhanced growth relative to any isolated
individual®.

In the second category, exploitation, one organism produces a
good that both organisms value, while the other organism pro-
duces only goods of value to itself. This arrangement captures
parasitic behaviors as well as forms of cheating and competi-
tion!”> 21, Indeed, this arrangement describes the public goods
dilemma that has been well-studied in social evolution'!.
Although one organism is exploiting the other, there is no real
production decision for the producer since it needs the good and
is the only one that produces it. This situation is at the heart of
the Black Queen Hypothesis, where adaptive gene loss leaves one
organism burdened with producing a costly metabolite that is
exploited by the community??.

The final category, self-sufficiency, represents the most flexible
and possibly primitive arrangement. Here, each organism is
capable of producing all of the goods it needs for survival and
both organisms value these goods. The possible goods that fit this
scenario include amino acids or molecules that are essential to
central metabolism or maintenance. Interestingly, this category is
a precursor to the other categories, as loss-of-function mutations
can result in either mutualism or exploitation scenarios?. Thus,
the self-sufficiency case is often the starting point for models that
explore the Black Queen Hypothesis'® 23, In this paper, we focus
exclusively on the self-sufficiency arrangement in order to
understand its dynamics and how they might prime populations
to evolve into one of the other categories.

The self-sufficiency case has also been studied implicitly in
models of metabolic trade. In these models, metabolic networks
that are capable of growing on a variety of resources, are joined
together to understand how the combined metabolism might
function®*~2°. The production decisions are solved using some
objective function and flux balance analysis. By joining metabo-
lisms, it has been shown that extant organisms can grow on a
wide variety of resources?’. One feature lacking in these models is
the dynamic interplay between population composition and
production—especially when organisms have different produc-
tion capabilities and there is a tension between maximizing
individual and population growth rates.

Here, we address the issue of population composition and
growth with a general microbial trade model that couples
population dynamics to organism production strategies. We
assume that each organism alters its production in order to
maximize its own growth rate. Since microbes can shift the
production of costly goods depending on environmental con-
centrations, each organism’s production of leaky goods affects the
production strategies of other organisms. Using this approach, we
uncover three unusual system-level behaviors that apply to the

Table 1 Classification of microbial exchange between two organisms involving two goods

Mutualism Exploitation Self-sufficiency

Organism 1 Organism 2 Organism 1 Organism 2 Organism 1 Organism 2
Good 1 p c p,c c p,C p,c
Good 2 c p — p.c p.c p.c

A p indicates that a good is produced and a c indicates that it is consumed. We assume that if an organism consumes a good, it benefits in some way
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Fig. 1 Coexistence with and without diffusion. a The growth rate of a
population consisting of a single cell type is a function of the maximum
amount of each essential metabolite that it can produce, i.e., a, for A and ag
for B. The gray line is the locus where the growth rate of a cell (type 2)
equals that of a reference cell (type 1) that has equal costs for producing
either metabolite, with as1=ag;="1. In the absence of diffusion,
coexistence with the reference cell type is only possible where the growth
rates are equal. Above the gray line, the type 2 cell grows faster and drives
the type 1 cells to zero relative frequency, i.e., the type 2 cells “win.” Below
the line, the situation is reversed. The coexistence line represents a
transition between the different cell types winning. b With diffusion,

e.g., when D=3, each cell-type population is affected by the other's
production. The coexistence region is significantly larger and fills much of
the quadrant considered, corresponding to where each cell type is more
efficient than the other at producing one of the metabolites

relevant trading scenarios between microorganisms. Furthermore,
these behaviors suggest evolutionary trajectories that lead popu-
lations to more structured forms of arrangement such as mutu-
alisms or exploitations.

Results
Extinction and coexistence. We consider a microbial population
model in which organisms trade through the production and
diffusion of metabolites. For simplicity, we assume that there are
two types of organisms (1 and 2) that require the same two
metabolites (A and B) in order to grow and reproduce. We denote
the amount of A and B metabolites in cells of type i=1, 2 as A;
and B; and the proportion of cells of type i by n;. Since we choose
to analyze the self-sufficiency case in Table 1, each organism can
consume and produce both A and B metabolites. Production,
however, comes with costs either as a result of energy expenditure
or forfeited opportunities to produce other goods or engage in
other processes. We assume that the production rates of meta-
bolites are subject to a budget constraint, whereby the organism
has a finite amount of resources (precursors, enzymes, ribosomes,
etc.) that can be devoted to the production of metabolites
(Methods section, Eq. (1)). Besides consumption and production,
metabolites can be gained or lost through passive diffusion
depending on the concentration gradient across the cell mem-
brane. The diffusive flux is mediated via the coefficient D. Finally,
metabolites are lost at a rate y either due to diffusion away from
the shared environment or by some process of degradation.
Before we explore the behavior of interacting microbial
populations, we first consider the growth of a population of cell
types in the absence of trade. We prevent different cell types from
exchanging metabolites by setting D=0 in Eq. (2). We assume
that every cell regulates its production rates of metabolites py;
and pp; so as to maximize its own growth. Because our
production constraint function Eq. (1) does not feature returns
to scale, there is no benefit to a division of labor among members
of the same cell type. As a consequence, every cell of the same

18:1361

type shares an identical strategy in terms of how much of each
metabolite is produced. We compute the growth rate for a cell
type as a function of the energetic costs of making A and B
metabolites, or equivalently, the inverse of the costs. We call the
inverse of a production cost the efficiency, that is, ax; = 1/cx;, and
it corresponds to the maximum amount of the good a cell can
produce.

In Fig. 1a, the gray line shows production efficiencies that yield
the same growth rate as a reference cell type, say cell type 1, that
is equally efficient at producing either metabolite, with
asp=apg;=1. When we add cell type 2 with production
efficiencies given by a,, and ag to a population of the reference
cell type, the only way for the two cell types to coexist is if the
production efficiencies lie on the gray line; otherwise, one of the
two cell types will grow faster and tend to 100% of the population.
Type 2 cells with efficiencies above the gray line in Fig. la grow
faster than the reference cell type and will ultimately drive it
extinct; below the gray line, the reverse is true. Thus, in the
absence of diffusion, coexistence is rare and only possible for
a specific relationship between production efficiencies that
constrains the two cells types to grow at equal rates.

We now consider what happens when two populations of cell
types can exchange metabolites (i.e., D > 0). For any initial mixed
population, #;, n,>0, there is a Nash equilibrium choice of
production rates where neither organism can improve its growth
rate by changing its production. The growth rates of each cell type
at this Nash equilibrium are not necessarily the same. If the
growth rates are different, then one cell type will increase in
relative frequency. This will alter the relative frequencies of the
two cell types n;,n, and could lead cell types to adapt to the new
frequencies by changing their production. This process continues
until either the growth rates of the two cell types are equal and
their relative frequencies are stable or one cell type is driven
towards extinction (zero frequency). For our choice of growth
functions, production constraints, and parameters, there is always
a unique stable equilibrium 77 in terms of the relative frequencies
of cell types. This means that for a given set of metabolic
efficiencies, all mixed populations will approach the same
equilibrium of relative frequencies. Of course, a change in the
efficiency of producing a metabolite could alter this equilibrium.

We compute the equilibrium 7] as a function of the relative
efficiencies of producing metabolites A and B. As before, we hold
one cell type, i =1, fixed in terms of its efficiencies and vary the
efficiencies for the other cell type, i=2. When one cell type is
better than the other at both production tasks, the only stable
equilibrium is that its fraction of the population approaches one,
and the other cell type is driven to extinction (results not shown).
This trivial result seemingly contradicts the notion of a
comparative advantage, familiar from Ricardian economics’®,
where there is a benefit from trade even if one agent is better at
producing all goods. In fact, at a fixed value of the relative
frequency 0 < n; < 1, a comparative advantage does play a role in
setting the Nash equilibrium, and both cell-type populations
benefit from the diffusive exchange. However, because cells can
reproduce, if one cell type, say 1, is better than the other at both
production tasks, it will always grow faster, and any relative
frequency except #n; = 1 will not be sustainable. For the rest of the
paper, we ignore this case and consider instead the case where
each cell type is more efficient than the other at producing one of
the two metabolites.

In Fig. 1b, the gray region indicates where a coexistence
equilibrium is observed. This region is much expanded in
comparison to the line in Fig. 1a, and many more combinations
of efficiencies lead to coexistence. Even though neither cell type is
more efficient than the other in the production of both
metabolites, there is still a region of parameter space in which
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Fig. 2 Specialization and the benefit of trade. a The equilibrium growth rate
of a population of two coexisting cell types is larger than what either of
them would be able to achieve alone. Here, we plot the difference between
the growth rate of a population of two cell types (one with the efficiencies
shown and a reference cell type with as1=ag;) and that of the surviving
cell type in the absence of diffusion. All areas of coexistence in the two-cell-
type population grow faster than the clonal cell population. b The higher
growth rate is achieved by cell types shifting the production toward the
metabolite in which they have a higher efficiency than the other cell type.
This shift may be complete for both types (purple), only for cell type 1
(blue) or 2 (red), or for neither (gray)

there is failure of coexistence. For example, when cells of type 2
are significantly worse at producing A than their counterparts but
are only marginally better at producing B, then, the system tends
toward an equilibrium where cell type 2 goes extinct (n, — 0).
Similarly, there is a corresponding region where cells of type 2 are
significantly better at producing B but are only marginally worse
at producing A, and they take over the population (1, — 1).

Where coexistence occurs, we find that the growth rate (equal
for the two cell types, by definition of the equilibrium) is larger
than either cell type would have been able to achieve in isolation
(Fig. 2a). By concentrating the production to the metabolite each
cell type is better at producing, both cell types experience an
increased growth rate. This result has been found in other,
different models of microbial trade® 2°. In our model, the
advantage of trade is achieved even when specialization is not
complete, that is, when a cell type produces both metabolites. In
Fig. 2b, we show the regions in parameter space where either
both, one, or neither of the cell types specialize completely. In
general, the highest growth rates occur where both cell types
completely specialize, though there are regions of high growth
where only one cell type completely specializes. In all cases, the
increased growth rate resulting from trade and specialization, that
is, compared to growth in isolation, does not require any global
coordination between the cell types. Rather, it emerges from each
cell type producing what maximizes its own growth rate.

Until now, we have primarily investigated what conditions
permit coexistence. However, if we also consider the resulting
population composition and growth rates, we find that the
interplay between the three types of dynamic variables in our
model can lead to seemingly paradoxical phenomena. We
illustrate three salient examples below.

Paradox 1: the curse of increased efficiency. The first paradox
concerns the relative frequency of cells of type 2 as a function of
their metabolite production efficiency. Specifically, we consider a
horizontal cross section of the parameter space in Fig. 2b where
au, is fixed and ag, varies. As cells of type 2 become better and
better at producing B, their relative frequency at first increases as
might be expected due to their increased productivity. However,
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Fig. 3 The curse of increased efficiency. a The relative frequency of type 2
cells (blue) and growth rate of the total population (orange) are shown as a
function of the efficiency of type 2 cells in producing metabolite B. We fix
aaz=0.67. As the efficiency of type 2 cells increases, their relative
frequency ultimately decreases. The population growth rate, however,
increases with a higher metabolic efficiency. b The shaded regions indicate
where type 2 cell populations are increasing (light gray) or decreasing (dark
gray) in relative frequency as they improve in efficiency in producing
metabolite B, that is, moving from left to right along the indicated line. In
the dark-gray region, the relative frequency of cell type 2 decreases toward
0 as its efficiency increases toward infinity

at some point, their relative frequency reaches a maximum and
declines (Fig. 3a). Thus, even though the type 2 cells can produce
more of the B metabolite without decreasing the production of A,
they represent a smaller fraction of the population. This effect
intensifies as the production efficiency of B increases toward
infinity, driving the fraction of type 2 cells in the population
toward 0.

The region where this “curse” is in effect is illustrated in
Fig. 3b. It occurs in the area where cell type 1 is completely
specialized and only makes the A metabolite. Since cells need
both A and B to grow, cell type 1 specializes in A because there is
enough B in the environment provided by cell type 2 for it to
forego production of B. Along a horizontal cross section,
following the arrows in Fig. 3b, cell type 2 gets more efficient at
producing B, but cell type 1 has the same production capacity for
A. Because type 1 cells are not getting better at producing A, their
fraction of the population—needed to support the continued
growth of both populations—increases. This phenomenon can be
seen analytically in the limit of a small degradation rate u and
under the assumption of full specialization, where pg; =ps,=0.
In this case, we have n1ps; = nypp, and so, ny =a,1/(aa; + agy),
where the fraction of type 2 cells is inversely proportionate to
their efficiency in producing B.

Though the relative frequency of type 2 cells increases and
decreases as ap, increases, the population growth rate is always
increasing. Therefore, even when the relative frequency of cell
type 2 is decreasing, its total numbers might not be decreasing,
because it is growing at a faster rate than it would be otherwise.
The local effects—decreased relative frequency of cell type 2—are
paradoxical, but the global effects—the population growth rate—
are consistent with expectations. This observation partially
resolves the paradox wherein a cell-type population appears to
suffer as a result of a gain in efficiency. However, in the next
paradox, we will show that even when considering the growth
rate instead of the relative frequency, a population can suffer as a
result of a gain in efficiency.

Paradox 2: the curse of decreased inefficiency. The second
paradox concerns the population growth rate of both cell types as
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Fig. 4 The curse of decreased inefficiency. a The growth rate of type 2 cells
in isolation increases as they improve in efficiency of making A, the
metabolite that they produce more poorly (ag>=1.82, as, <1). b Similar to
the previous plot, but in the presence of a reference cell type
(ag1=aa1=1). Here, as the type 2 cells increase in efficiency of producing
A, the population growth rate (orange) decreases in the light-gray region.
This also corresponds to an increase in relative frequency of the type 2 cell
(blue). € The shaded regions indicate where the population growth rate is
constant (dark gray), decreasing (light gray), or increasing (middle gray) as
type 2 cells improve in efficiency in producing metabolite A, i.e., moving up
along the indicated line. d The amount of B and A metabolites produced by
type 2 cells is shown as a function of the efficiency in producing A. In the
light-gray region, where the population growth rate decreases, the type 2
cells shift the production from the B metabolite to the A metabolite

a function of metabolite production efficiency. Here, we consider
a vertical cross section of Fig. 2b, where type 2 cells have a fixed
efficiency of producing B, but a varying efficiency of producing A.
Traversing up a vertical cross section corresponds to type 2 cells
being able to produce more A but still not as much as type 1 cells.
In a homogeneous population with only one cell type, any
improved efficiency in production would correspond to an
increased growth rate (Fig. 4a). However, in a mixed population,
Fig. 4b shows that as cells of type 2 get more efficient at produ-
cing the A metabolite, the population growth rate decreases
(before ultimately increasing). Thus, despite an increased capacity
to produce metabolites, the population grows more slowly.

To explain this paradox, we consider the absolute maximum
growth rate that a population of two coexisting cell types could
achieve, assuming that they perfectly coordinated their produc-
tion of metabolites. For this maximum growth rate to be
sustainable, the growth rates of both cell types must be equal;
otherwise, the relative frequency of the cell types will change and
the population will no longer be able to sustain this growth rate.
There is no reason for the maximum sustainable growth rate to be
achieved as a Nash equilibrium, and in general it is not. We
determine the parameters n;, pai, Pp1> pan and pp, that
correspond to the maximum sustainable growth rate and find that
in almost all cases, this optimum is achieved when cell types fully
specialize in their production of metabolites, that is,
PB1=panr=0and pg,, pa;1 > 0. The reason, then, that increasing
the efficiency of cell type 2 to produce A decreases the growth rate
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Fig. 5 Different types of equilibria and the growth cost of control. The
steady-state growth rate of cells of type 1 (red) and type 2 (blue) under
four different scenarios: each type maximizing its own growth (dark solid
lines), both types maximizing the growth of cells of type 1 (dashed), both
types maximizing the growth of cells of type 2 (dotted), and perfect
coordination, where each cell type produces only a single metabolite and
the population achieves the maximum sustainable growth rate (light solid
lines). The production efficiencies used in this example are as1=ag1=1,
aa=0.67, and ag> =1.49. The resulting population dynamic equilibria are
marked. The growth rate of the competitive equilibrium is closer to the
maximum sustainable growth rate than either equilibria reached when a
single cell type is in control

of the population is that it moves the Nash equilibrium away
from complete specialization, that is, away from the steady state
that achieves the maximum sustainable growth rate. This explains
why the population growth rate starts decreasing at the same
point that cell type 2 no longer specializes (Fig. 4c, d).
Interestingly there is a small range for ap, for which there are
two cycles of decreasing and increasing the growth rate,
corresponding to type 2 cells shifting the production and then
type 1 cells shifting the production (Supplementary Fig. 3).

Paradox 3: the curse of control. The final paradox focuses on the
population growth rate as a function of how metabolic produc-
tion is determined. Until now, we have assumed that both cell
types are choosing their own production, so as to maximize their
own growth rate. Here, we consider what happens if one cell type
is able to determine both its own production rates and those of
the other cell types. This situation occurs in some game-theoretic
settings®”, where a single player can force others to follow a
particular strategy of their choice, for example, by playing a
punitive strategy when the other players deviate. In the case of
microbes, we imagine that a microbial population has evolved the
ability to manipulate its partner. While this scenario is mostly a
theoretical construct, it is inspired b}}l the ability of microbes to
manipulate quorum-sensing systems®! as well as the ability of
parasites to manipulate their host’s behavior.

We implement the manipulation by assuming that the
production rates for both cell types are chosen to maximize the
growth rate of type 1 cells, regardless of the resulting growth rate
for cells of type 2. We repeat the numerical process as before
where we solve for the steady-state growth rates at a given value
of n;, and depending on the relative value of growth rates, they
either increase or decrease ;. Since cell type 1 is controlling the
production, it continually increases in relative frequency until the
growth rates of the two cell types are identical. We find that while
the resulting equilibrium has a larger proportion of cells of type 1
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Fig. 6 Evolution of paradoxical behavior in a metapopulation model. a A schematic shows the structure of the metapopulation model. Each patch (box) is
colonized by two cells that are potentially of the same type. The cells grow and reproduce in the patch for a fixed amount of time and then, they are
released to colonize new patches, thereby completing a “round”. The process is repeated until a steady state of relative frequencies is reached. b Paradox 1
is observed when cell type 2 mutants with increased ag; invade. Each + indicates a mutant with an increased efficiency over its ancestors such that the +++
mutant has the highest ag,. In each case, the mutant successfully displaces its ancestor but reaches a lower final proportion. ¢ The population size
corresponding to b shows that despite the lower proportion of the mutant, the growth rate (proportional to population size) is increasing. d An invasion by
type 2 cell mutants with successively higher as» is shown. The first mutant does not invade, but the second and third do. e The population size
corresponding to d shows the occurrence of paradox 2 during the invasion of the ++ mutant. The population size decreases. Following the successful
invasion of the +++ mutant, the population size increases beyond its initial starting point

compared with the situation achieved by the competitive Nash
equilibrium, the population grows at a slower rate.

To see how this paradox occurs, we choose a set of production
efficiencies and compute the steady-state growth rates of the two
cell types as a function of their relative frequencies. Figure 5
shows the growth rates under four scenarios: (1) each cell type
maximizing its own growth rate, (2) both types maximizing the
growth rate of cells of type 1, (3) both types maximizing the
growth rate of cells of type 2, and (4) complete specialization,
where each cell type produces only a single metabolite. The
population dynamic equilibrium is achieved when the two growth
rates are equal. Though the competitive setup leads to a
population dynamic equilibrium with a growth rate that is not
as large as complete specialization, which happens to be the
maximum sustainable growth rate, it comes closer to this
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optimum than do the equilibria that result from maximizing
the growth of either single cell type.

This paradox demonstrates that if a cell type controls another
so as to maximize its immediate growth rate, then, it effectively
sacrifices its long-term growth rate. This implies that there is
always some long enough time horizon for which this trade-off
will result in fewer cells of the controller. Suppose that dN;/dt =
{g:N;, where { determines the typical population dynamics time
scale relative to the typical times over which the chemical
concentrations evolve. Then, we can determine how long it takes
for the number of type 1 cells in a population following the
competitive production dynamics to overtake the number of type
1 cells in a population following the production dynamics
controlled by type 1 cells. If the two cell types start at equal
frequency, this will happen after a time ¢ = 13.5( "1, at which point
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the number of type 1 cells in both populations would have grown
by a factor of 1420 (Supplementary Fig. 9).

Appearance of paradoxes in evolving populations. We have
presented three paradoxical behaviors that can occur in simple
microbial populations engaged in leaky trade. In each case, we
demonstrated the paradox by comparing populations composed
of two cell types. Although such comparisons highlight the
counterintuitive behaviors, they do not offer any indication as to
whether such paradoxes can occur in evolving populations. For
example, in the first paradox, we show that a cell type can
improve in its efficiency in making a metabolite, and as a con-
sequence, represents a lower proportion of the total population.
We did not, however, show that a mutant with a higher efficiency
could invade a population, replace its ancestor, and ultimately
end up at a lower relative frequency in the population than its
ancestor.

To address the issue of evolutionary plausibility, we consider a
simple scenario in which a mutant appears in a structured
population with two resident cell types (Fig. 6a). The population
is composed of different patches, each founded by two cells. Cells
grow in patches for a fixed amount of time and then disperse to
colonize new, unoccupied patches. The process is repeated until a
steady state of relative frequencies of cell types is reached.

Figure 6b shows the results of introducing type 2 cell mutants
with a higher B production efficiency in our metapopulation
model. We find that each mutant with a higher ag, is able to
invade and replace its ancestor. The steady-state relative
frequency of each mutant is less than its ancestor but the total
population size—proportional to the community growth rate—
increases (see Fig. 6¢). For the simulations, type 1 cells are fixed
with a,; =ap; =1 and all type 2 cells have a,, = 0.67 which are
the same parameters as used in Fig. 3. The ap, values are 2, 4, 10,
and 20 for the initial type 2 cell, the + mutant, the ++ mutant, and
the +++ mutant, respectively. We chose a growth time in each
patch of 12.5 but found that the paradox was observed so long as
the time grown in a patch was sufficient to produce 1000
organisms across the population (see Supplementary Note 4).
Prior to this time, some mutants cannot invade because there is
not sufficient time for growth differences to accumulate and
patches with mixed cell types to reach a high enough proportion.

In Fig. 6d, e, we investigate the appearance of paradox 2 by
considering invasions of type 2 cell mutants with a higher
efficiency of making the A metabolite. Using the same parameters
from Fig. 4 where type 1 cells are fixed with a, ; =ap; =1 and all
type 2 cells have ap, =1.82, we consider an ancestral type 2 cell
with a4,=0.2 and three mutants with a,,=0.57 (+ mutant),
as,=0.625 (++ mutant), and a4, =0.71 (+++ mutant). The first
mutant cannot invade because patches with type 1 cells and type
2+ mutants are outgrown by patches with type 1 cells and
ancestral type 2 cells. This is indicative of paradox 2 because even
though the + mutant is more efficient, it has a lower growth rate
when combined with type 1 cells than its less-efficient ancestor.
The next mutant can invade because patches with only type 2++
cells outgrow patches with only type 2 cells enough to
compensate for any relative losses in mixed populations of type
2++ and type 1 cells. As a result, the entire population size
decreases, as predicted by paradox 2. Finally, the +++ mutant is
also able to invade but the population size increases. This is a
result of an increased growth rate in patches with type 1 and type
2+++ cells. For these simulations, again, we used the time of 12.5.
In general, the success of the mutants is much more sensitive to
the duration of growth within patches (Supplementary Note 4).

Finally, we consider an evolutionary system involving paradox
3. We assume that a resident population of type 1 and type 2 cells
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is invaded by a mutant type 2 cell that can manipulate either cell
type’s production so as to maximize its own growth. Thus, in
mixed patches, whichever cell type is present with the type 2
manipulator cell will have its production altered so as to
maximize the growth of the manipulator strain. In this case, we
find that the manipulator—despite its advantage—cannot invade
the metapopulation from a low relative frequency (see Supple-
mentary Note 5 for the case using parameters from Fig. 5). Even
though it benefits at the expense of its partner in mixed
populations, these patches are not as productive as other mixed
patches without the manipulator. So, patches with type 1 and type
2 cells produce enough cells to overwhelm the manipulator and
keep it from invading. If, however, the type 2 manipulator starts
its invasion with a high enough relative frequency, it can invade
the metapopulation, but in doing so, it drives both type 1 and
ancestral type 2 cells extinct (Supplementary Note 5). This leaves
the manipulator strain alone in the population with no other cell
type to manipulate.

Discussion

Microbes constantly face decisions about which metabolites to
produce. These decisions depend on what metabolites are present
in the environment, which, in turn, can be affected by the
abundance and production decisions of other microbes. Here, we
introduce a simple, general mathematical model to understand
the interplay between microbial production decisions and popu-
lation dynamics. Using this model, we identify the conditions that
permit coexistence among different species and discover three
paradoxical behaviors that demonstrate the unusual feedback
between individual-level production and population-level
dynamics.

In our model, beneficial trade emerges naturally as metabolites
diffuse in and out of cells and each organism maximizes its own
growth rate. We find that different microbes are able to coexist
across a broad range of production costs/efficiencies, and in all
cases of coexistence, microbes grow faster than if they were iso-
lated from one another. Coexistence occurs only when each of the
species are more efficient at producing a different resource.
However, this is not a sufficient condition. If one organism is
much more efficient at producing one resource and only mar-
ginally worse at producing the other, then, it can drive the other
species to zero frequency. Thus, there is some threshold for
production efficiencies that permits coexistence. In our model,
this threshold depends on the growth and production functions
of each microbe, as well as the diffusion and metabolite con-
sumption rates. While we investigated the simple case in which
each microbe has the same growth function and similar pro-
duction constraints, in real biological systems, it is likely that
these may differ across species, and these differences may result in
a richer and more complex set of dynamics’. Our set of
assumptions concerning overlapping metabolic needs are similar
to other models that explore the Black Queen Hypothesis'® 2% as
well as metabolic specialization®®. The simplicity of the models
restricts direct application but helps build intuition about real
biological scenarios.

Another consequence of our model is the natural emergence of
a division of labor. At each iteration of our model, each microbial
species made a production decision that maximized its growth
rate in the current environment. Through this simple process, we
observed that each microbe shifted its production to the meta-
bolite it is better at producing. Although the microbes did not
become complete obligates, we found that this increased specia-
lization led to a higher population growth rate without any
external coordination. We note that for some fixed values of
production efficiencies/costs, the population as a whole could
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grow faster if each microbe completely specialized and this out-
come was a stable Nash equilibrium.

The curse of decreased inefficiency provides a mechanism by
which the division of labor in mutual obligates (the mutualism
category in Table 1) evolves without built-in returns to scale or
any benefit of specialization in the production efficiency. In some
models of microbial exchange, when one organism loses the
ability to make a resource, it grows faster due to a built-in benefit
of specialization'?. This leads to a rapid loss of functionality in
coevolving species such that they become mutually reliant on one
another. In turn, this loss of functionality can lead to the situation
featured in the Black Queen Hypothesis discussed earlier’?, Our
model shows that such increased growth does not require any
built-in benefits of specialization. It can simply emerge as a
consequence of the fact that a loss in efficiency forces one species
to bring its production strategy closer to the globally optimal
situation of complete specialization, i.e,. the inverse of paradox 2.
Figure 2a shows that the population can grow faster if type 2 cells
either increase their efficiency in producing B or decrease their
efficiency in producing A.

Another paradox that we uncovered is the curse of increased
efficiency, in which as one species becomes more efficient at
producing a resource, it becomes rarer in the population. Note
that a species that produces both resources less efficiently would
experience a similar decline in population. Although these two
scenarios exhibit similar qualitative behavior, there are important
differences in population structure and stability. In the case of the
more efficient species, even though it is rare, it is significant by
virtue of its metabolic contribution. If it went extinct due to some
stochastic fluctuation, then, the population growth rate would
sharply decrease because of the dependency of the more abundant
species. In the case of the less-efficient species, the more abundant
species does not have any such dependency and would experience
little change in its growth rate if the less-efficient species went
extinct. These two scenarios may happen in real populations, and
without a detailed understanding of the interdependencies that
evolved through trade, we may make incorrect inferences about
these systems. Indeed, in large microbial consortia, our findings
suggest that low-abundance organisms may not necessarily be less
fit and, potentially, they could be essential to the fast growth rate
of the community. There is evidence of this effect in regard to
some microbial communities exposed to antibiotics>, in which a
population of antibiotic-resistant and antibiotic-sensitive types
depends on the efficiency with which resistant types break down
the antibiotics, and decreasing the efficiency of resistant types
increases their relative frequency in the population.

The paradox of increased efficiency is related to the trade-off
between growth and relative abundance presented in ref. 6. In
both cases, modification of a species’ trait decreases its relative
abundance in the population but yields a faster-growing popu-
lation. In ref. °, this trait is the extent to which a species exports a
particular metabolite into the environment. A species can
increase its relative abundance by restricting the export of
metabolites, but the population as a whole grows more slowly. In
the absence of selection for faster population growth, species will
tend to evolve the restricted export of metabolites®. In contrast,
the modifiable trait in our model is the efficiency of producing a
particular metabolite. As a species increases its efficiency, it
decreases in relative abundance but the population grows faster. If
a single organism of the species were to decrease its efficiency, it
would be outcompeted. If, instead, the single organism were to
increase its efficiency, it can successfully invade. Thus, there is
selection to increase the metabolic efficiency of the species despite
the trade-off in relative abundance.

The third paradox that we uncovered, the curse of control,
shows how exploitation of one species by another can lead the
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whole system to a worse growth rate. This paradox demonstrates
a problem with forms of parasitism and cheating via chemical
manipulation®" 3¢, Tt is a stronger form of exploitation than
cheating via foregoing the production of a costly public good?!,
because one species completely controls another’s production and
manipulates it to maximize its own growth. The short-term gains
in population abundance that arise by these strategies lead to
long-term losses in the population growth rate. Depending on the
length of time of an association, it may be more beneficial to
compete with another microbe than to exploit it. In our meta-
population model, we found that even if a cell type can manip-
ulate all others so as to maximize its own growth rate, it can fail to
invade the population because of the greater production of
competing populations without the manipulator. When the
manipulator did invade the population, it drove all other cell
types extinct, rendering its ability to manipulate useless.

In this paper, we restricted ourselves to the study of a parti-
cularly simple case of a much more general model. Though we
consider only two metabolites and two cell types with equal
requirements for growth, we not only illustrate the uncoordinated
emergence of beneficial trade within a coexisting population, but
also uncover a rich landscape of unexpected outcomes. Our
model can be generalized to study the interaction of any number
of cell types, exchanging any number of valuable molecular spe-
cies, with arbitrary growth rates given as functions of the con-
centrations of these molecules, and with arbitrary constraints on
their production rates. We expect that by adding more com-
plexity to our model, we will be able to model a large range of
emergent behavior that may be present in a real microbial
community and may run counter to common intuition and
implicit assumptions about the driving principles in these
communities.

Methods

Model description. We consider a microbial population model in which organ-
isms require two metabolites A and B in order to grow and reproduce. We assume
that the population growth rate of cell type i is proportional to a rate g;,(4;, B;)
determined by its internal concentration of the metabolites. Although there may be
many possible growth functions g;, we choose the general functional form

gi(A;, B;) = k;A;B;. This represents a mass action law for an elementary reaction,
wherein A and B react to form a product that is used directly for growth. We
consider the simple case of the growth functions g; in which both organisms have
the same growth function and k; = 1. This assumption implies that the organisms
have similar metabolic needs. As a consequence of the growth process, metabolites
A and B are consumed at rates s, g;(A;, B;) and sp;gi(A;, B;), respectively. The
stoichiometry coefficients, s4; and sg;, depend on the growth reaction and here, we
investigate the simple case where s, ;=sp;=1.

We assume that each cell type i can produce both metabolites, but that the
production rates of A and B metabolites, denoted by p4; and pg;, are subject to a
budget constraint that reflects a finite amount of resources that can be devoted
toward production. We encapsulate the relevant constraints in the production
constraint function, P/(pa; ps,), subject to a constraint Pi(pa; pp,) < Pmax Where
Px,i is the rate of production of metabolite X by cells of type i. For example,

Pi(paipsi) = caipai + caipsi < 1 (1)

represents a situation where metabolites A and B can be produced at fixed costs
(ca,i and cg, given in units of the total budget) independent of the total rate of
production. Thus, there are no returns to scale.

In addition to production and consumption, we assume that there is a rate of
passive diffusion of metabolite molecules out of any cell and into a random other
cell. The total flux of molecules leaving cells of any type will be proportional to a
diffusion coefficient D, the intracellular concentrations of the molecules, and the
number of cells of this type. Since diffusion is unbiased in our model, molecules
will enter cells of type 1 or 2 according to their proportions in the population. We
define the relative frequency of cells of type i by n; = N;/(N; + N,), where N; is the
number of cells of type i. As a result, the net flux of A molecules entering a single
cell of type 1 is Dny(A, — A;) and similarly Dn;(A; — A) for cells of type 2. The
diffusion coefficient D determines the relative rate at which molecules flow down a
gradient as opposed to getting consumed by the growth reaction. Therefore, the
smaller D is, the more benefit a microbe derives from producing a metabolite
directly as opposed to relying on a trading partner. We use D =3 in the numerical
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cases investigated in the main text of the paper, but show the effects of varying D in
the Supplementary Material (Supplementary Note 1).

Besides cross-cell diffusion, we assume that there is a rate x4 at which
metabolites are lost and not regained by any cell. We set this loss rate to be u = 0.05
throughout the paper. Although the precise value of i does not change the key
results of the paper, we analyze the effects of varying u in the Supplementary
Material (Supplementary Note 1).

These dynamical processes result in a set of differential equations that describes
the intracellular concentrations of A and B metabolites in the two types of cells:

dA‘ = pa1 + Dny(A; — HAL —sa181(A1, Br),
dB' = pp1 + Dny(By — By) — uBy — sp1g1 (A1, Br),

Ay) -
)=
d, = paa +Dni(Ar — Ay) — pAs — 528 (As, By),
4B — pp + Dny(By — By) — By — spaga(A2, By).

@)

This dynamical system is similar to the one Taillefumier et al.>* used to study
coordination among bacterial populations when exposed to a diverse resource
supply. In our situation, we have no externally supplied metabolites and do not
allow cells to interconvert metabolites: all metabolites are immutable and produced
by the cells themselves. We also simplify the system by modeling diffusion between
cells rather than explicitly modeling the extracellular environment. As a result, our
system has three types of coevolving dynamic variables: the intracellular metabolite
concentrations (A; and B;), the production terms (p,; and pg;), and the relative
population frequencies of the cell types (1, and n,).

We assume that the dynamics with which the population sizes, N;(f) and N,(t),
evolve is much slower than the rates of metabolite production and diffusion. At
shorter time scales, the metabolite concentrations reach a steady state, where the
time derivatives on the left-hand sides of Eq. (2) equal zero. For particular values of
the production rates, the steady-state values of the growth functions, denoted as g}
and g, can be determined by solving the resulting algebraic equations. If g/ >g;,
then, n,, the relative frequency of cells of type 1, grows, thereby altering Eq. (2).
Since an increased n,; affects the values of the steady-state growth rates, we then
resolve for the steady state with the increased »;. This iterative process continues
until a stable population equilibrium is reached. In order for the system to be in a
stable equilibrium with both cell types at nonzero frequency, the steady-state
growth rates must be equal, that is, g = g5. Alternatively, there could be an
equilibrium where one cell type has a higher growth rate, while the other cell type is
driven to a relative frequency approaching zero.

We have not yet discussed how the production rates are chosen subject to the
budget constraint. In our model, we assume that the production rates, px ;, can vary
in time. One possibility of how this happens is to assume that the organisms can
regulate their production rates on a fairly short time scale, and cells of each type
adjust their own production rates so as to maximize their growth, subject to the
perceived external conditions. This assumption leads to a situation where each cell
type’s choice of production rates is the best response to the external conditions,
which are the result of the choice of the other cell type, implying a Nash
equilibrium. While the assumption that the production can be regulated on a
shorter time scale than the population dynamic time scale that is convenient, it is
not necessary even if regulation only occurs through mutations, the system will be
driven to a Nash equilibrium by the fact that a population not using the best-
response production rates is susceptible to invasion by a mutation that does
(Supplementary Note 2). Also, see Supplementary Note 3 for a discussion of
changing functional forms of the model.

Code availability. A computer code for our analyses is provided as Supplementary
Files.

Data availability. No data were produced in this study.
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