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The jamming transition of particles with finite-range interactions is characterized by a variety of
critical phenomena, including power law distributions of marginal contacts. We numerically study
a recently proposed simple model of jamming, which is conjectured to lie in the same universality
class as the jamming of spheres in all dimensions. We extract numerical estimates of the critical
exponents, 𝜃 = 0.451 ± 0.006 and 𝛾 = 0.404 ± 0.004, that match the exponents observed in sphere
packing systems. We analyze finite-size scaling effects that manifest in a subcritical cutoff regime and
size-independent, but protocol-dependent scaling curves. Our results supports the conjectured link
with sphere jamming, provide more precise measurements of the critical exponents than previously
reported, and shed light on the finite-size scaling behavior of continuous constraint satisfiability
transitions.

PACS numbers: 05.65.+b,45.70.-n,89.75.Da,89.75.Fb

Jamming is the continuous emergence of nonzero me-
chanical moduli in a system of particles with finite-range
interactions [1–3]. The ensemble of configurations at the
transition boundary exhibits many dramatic phenom-
ena, including anomalous vibration spectra [4–6], iso-
staticity and hyperuniformity [7], critical scaling of me-
chanical moduli [8], and power-law distributions of the
weakest forces and the smallest interparticle gaps [9–11].
The jamming transition can be understood as a continu-
ous analog of the satisfiability transition in random con-
straint satisfaction problems [10], usually studied in the
discrete setting [12]. Recently the transition in a simple
constraint problem, the perceptron, was conjectured to
lie in the same universality class as the sphere jamming
transition in all spatial dimensions [10]. Here we numer-
ically study the perceptron and show that the power law
exponents match those measured numerically for sphere
jamming, but may not match the theoretically predicted
exponents. We employ finite-size scaling to extract pre-
cise measurements of the exponents and demonstrate the
universal critical behavior of the system. Our results sup-
port the conjecture linking the perceptron to sphere jam-
ming, and provide more precise numerical estimates of
the jamming critical exponents than previously reported.

The jamming ensemble corresponds to the random
packing configurations of nonoverlapping hard spheres
such that no improvement in the packing density is pos-
sible by local movement of the spheres. As such, it is a
local transition between the satisfiability of the nonover-
lap constraints at lower density, and unsatisfiabily of all
constraints simultaneously at higher density. This tran-
sition for equal-sized three-dimensional spheres occurs
typically at a range of densities around 64% depending
on preparation protocol [13]. The restriction to random
packing is crucial, since the constraints are simultane-
ously satisfiable all the way to the close packing density
of spheres, 74%. As a result, any theoretical treatment
of the jamming transition must overcome the problem of
excluding configurations with crystalline order from the
phase space. One approach that has been successful in

reproducing the metastable disordered phase behavior of
systems with a thermodynamically stable ordered phase
has been to construct systems with quenched disordered
that exhibit the same correlation structure in the disor-
dered phase [14].
The perceptron model, well known in machine learn-

ing [15], when extended to its nonconvex regime, has
been shown by Franz and Parisi to be solved by the same
replica symmetry breaking (RSB) ansatz as that occur-
ring as a solution for the jamming point in a model of
sphere packing in the limit of an infinite number of di-
mensions [10, 16]. It is conjectured that the jamming
transitions of spheres in all dimensions lie in the same
universality class as these two models [9, 16]. Here, we
numerically simulate the perceptron model and compare
our numerical results to numerical simulations of sphere
jamming and the theoretical predictions of the RSB so-
lution.
For a given size 𝑛 and number of constraints 𝑚, an

instance of the perceptron is given by the following con-
strained optimization problem:

maximize 𝐹 (x) = ‖x‖2 = ⟨x,x⟩
subject to x ∈ R𝑛

⟨𝜉𝜇,x⟩ ≤ 1 for all 𝜇 = 1, . . . ,𝑚,

(1)

where 𝜉𝜇, 𝜇 = 1, . . . ,𝑚, are independently drawn from
a uniform distribution over the unit sphere 𝑆𝑛−1. To
approach the thermodynamic limit, the system size 𝑛 is
increased toward infinity while the ratio 𝛼 = 𝑚/𝑛 is held
constant [10].
An equivalent formulation, closer to the traditional set-

ting of the perceptron model is obtained by restricting x
to 𝑆𝑛−1 and maximizing the distance from the nearest
point 𝜉𝜇. However, the formulation (1) allows all the
constraints to be linear inequality constraints. Thus, the
only nonlinearity, distinguishing (1) from a linear pro-
gram (LP), is in the objective function. Moreover, since
the objective is convex, the local maxima occur at ver-
tices of the feasible polytope, so the number of active
constraints (constraints satisfied with equality) must be
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FIG. 1. Mean values of the smallest force (solid line) and of
the smallest slack (dashed line) in the locally optimal solutions
reached by the sequential LP protocol in random instances of
the perceptron as a function of system size. The lines show the
power-law fit to the data, from which we extract the numerical
exponent estimates: 𝜃 = 0.451± 0.006 and 𝛾 = 0.404± 0.004.

at least 𝑛. (It can also be no greater than 𝑛 due to
the genericity of the constraints). In these properties,
the model is reminiscent of an earlier jamming model,
namely the jamming transition of lattice sphere packing
[11, 17]. In this model, the determinant of a symmet-
ric 𝑑 × 𝑑 matrix 𝑄 is minimized, subject to the linear
constraints ⟨𝜉,𝑄𝜉⟩ ≥ 1 for all 𝜉 ∈ Z𝑑. Whereas the per-
ceptron model has quenched disorder, the sphere packing
and lattice packing models do not and have an ordered
phase in addition to the disordered phase.

One of the remarkable properties of the jamming en-
semble observed in sphere jamming is the power law dis-
tribution of very weak contact forces and of very small
interparticle gaps. In the context of general constrained
optimization problems, these correspond to the distribu-
tion of Lagrange (or Karush–Kuhn–Tucker) multipliers
associated with active inequality constraints and the dis-
tribution of slacks of inactive constraints (the difference
between the two sides of an inequality constraint). The
constraints at the low end of each of these distributions
can be thought of as the marginal constraints: the active
constraints closest to becoming inactive and vice versa.
The observation of power law distributions of marginal
constraints has been explained heuristically as resulting
from the marginal stability of typical jammed configu-
ration [18]: in order for the configuration to be stable,
it must either exhibit a suppression of weak active con-
straints, which contribute to instability, or an enhance-
ment of small-slack inactive constraints, which contribute
to stability, or both, as is observed. A quantitative ver-
sion of this argument gives a predicted relation between
the exponents of the two power laws.

At a locally optimal feasible point of (1), standard re-
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FIG. 2. Critical exponent values inferred from the average
slopes of the curves of Figure 1 measured between between 𝑛
and 2𝑛. The horizontal lines are the theoretically predicted
values. No clear trend signaling corrections to finite-size scal-
ing is apparent.

sults in nonlinear optimization imply the existence of La-
grange multipliers (forces) 𝑓𝜇, such that 𝑓𝜇 > 0 if and

only if ⟨𝜉𝜇,x⟩ = 1, and x = ‖x‖𝑛−1/2
∑︀

𝜇 𝑓𝜇𝜉𝜇. It is pre-
dicted that in the thermodynamic limit, the distribution
of forces satisfies a power law 𝑝(𝑓) ∼ 𝑓𝜃 with a universal
exponent 𝜃 = 0.42311 for small 𝑓 [10]. In particular, the
smallest force is of the order of the value 𝑓min such that∫︀ 𝑓min

0
𝑝(𝑓)𝑑𝑓 ∼ 1

𝑛 . That is, 𝑓min ∼ 𝑛−1/(1+𝜃). For finite
systems, we expect the distribution to follow the power
law only in the range 𝑛−1/(1+𝜃) ≪ 𝑓 ≪ 1. However, as
in other universal critical points, we expect a finite-size
scaling behavior even for moderately sized finite systems.
In particular, we expect, when 𝑓 ≪ 1,

𝑝(𝑓) = 𝑛−𝜃/(1+𝜃)𝑝
(︁
𝑓𝑛1/(1+𝜃)

)︁
. (2)

We are also interested in the distribution of slacks of
inactive constraints. Let 𝑟𝜇 = 𝑛1/2(1− ⟨𝜉𝜇,x⟩)/‖x‖ and
let 𝑛𝑔(𝑟)𝑑𝑟 be the expected number of constraints 𝜇 such
that 0 < 𝑟 ≤ 𝑟𝜇 ≤ 𝑟 + 𝑑𝑟. The theoretically predicted
distribution for small 𝑟 in the thermodynamic limit is
𝑔(𝑟) ∼ 𝑟−𝛾 , and consequently the smallest nonzero slack
should scale with system size as 𝑟min ∼ 𝑛−1/(1−𝛾) [10].
The theoretically predicted universal value for the expo-
nent is 𝛾 = 0.41269 [10]. For finite systems, the power
law should be cut off around 𝑟min consistent with a finite-
size scaling function

𝑔(𝑟) = 𝑛𝛾/(1−𝛾)𝑔
(︁
𝑟𝑛1/(1−𝛾)

)︁
. (3)

The marginal stability heuristic predicts that 𝛾 = 1/(2+
𝜃), a relationship that is satisfied by the theoretically
predicted values [10, 18].
We perform numerical optimization of the perceptron

at a constraint ratio 𝛼 = 4 and sizes 𝑛 = 200, 300, 400,
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FIG. 3. (Color online.) Empirical distributions (left) of slacks of inactive constraints (top) and Lagrange multipliers of active
constraints (bottom) at the jamming point. The middle and right panels show the finite-size scaling collapse of the distributions
using the numerically extracted exponents and the theoretically predicted exponents respectively.

600, 800, 1200, 1600, and 2400. We generate 105, 105,
105, 105, 105, 5 · 104, 2 · 104, and 2 · 104 independent
realizations, respectively, of each size. The optimization
protocol solves a sequence of LPs that are identical to (1),
except that the objective is replaced by a linear objective
𝐹𝑡(x) = ⟨y𝑡,x⟩. The objective vector for each step is

given by the solution of the previous LP: y𝑡+1 = xopt
𝑡 .

The real objective ‖x‖2 necessarily increases at each step
and the process converges to a local optimum of (1) in
finitely many steps.

In Figure 1, we plot the mean value of the smallest
force ⟨𝑓min⟩ and the mean value of the smallest slack
⟨𝑟min⟩ as functions of the system size. In both cases, we
obtain a power-law fit as predicted. The inferred val-
ues of the critical exponents are 𝛾 = 0.404 ± 0.004 and
𝜃 = 0.451 ± 0.006. The inferred values are close to the
theoretically predicted values, but do not seem to include
the latter in their confidence regions. Still, the inferred
values satisfy the marginality relation 𝛾 = 1/(2 + 𝜃).

It is possible that corrections to finite-size scaling are
responsible for the discrepancy between our numerically-
inferred exponents and the theoretical values and that
the apparent exponents at finite 𝑛 are different from their
limit as 𝑛 → ∞. We measure the local slopes of the
curves of Figure 1, and we do not observe a clear trend

in 𝛾(𝑛) or 𝜃(𝑛), which would be indicative of corrections
to finite-size scaling (see Figure 2). Still, partly due to the
increase in the error estimate, the slope values at larger
sizes seem to be more consistent with the theoretically
predicted exponents. Another explanation could be that
the thermodynamic calculation predicting the exponent
values only approximately applies to the setting at hand,
which employs a highly off-equilibrium hill-climbing dy-
namic.

Previous numerical studies of systems conjectured to
be in the same universality class provide similar esti-
mates of the critical exponents. Studying hard and soft
spheres in up to 10 dimensions, the authors of Ref. [9] find
𝛾 ≈ 0.39 for soft spheres, and 𝛾 ≈ 0.42 for hard spheres.
In finite-dimensional sphere packings, the distribution of
contact forces has additional contributions due to local-
ized modes that dominates at low forces, but the relevant
exponent 𝜃𝑒 can be extracted by looking only at contacts
coupled to extended modes [19, 20]. In Ref. [19], the au-
thors measure 𝛾 ≈ 0.38 and 𝜃𝑒 ≈ 0.44 for hard spheres in
3 dimensions. In Ref. [21], the authors measure 𝛾 ≈ 0.4
and 𝜃𝑒 ≈ 0.44 for hard spheres in 2 and 3 dimensions.
These values closely agree with our estimates of the crit-
ical exponents in the perceptron. Since we approach the
transition from the satisfiable side, our results should be
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FIG. 4. (Color online.) Finite-size scaling collapse for jam-
ming points of the edge-climbing and edge-jumping protocols.
The two sets of data collapse to a common curve in the critical
regime, but to two separate scaling curves in the subcritical
regime.

considered analogous to the hard sphere results.
We now turn to inspecting the distributions 𝑔(𝑟) and

𝑝(𝑓) presented in Figure 3. As the system size increases,
a clear power law develops extending to lower and lower
values of 𝑟 and 𝑓 . However, at each finite size, the power
law is cut off and approaches a constant as 𝑟, 𝑓 → 0. The
finite nonzero values of 𝑔(0) and 𝑝(0), are of particular
interest. Observation of such cutoffs have previously been
cited as evidence against the existence of a power law (or
for trivial exponents 𝛾 = 𝜃 = 0) [17, 22–25], but in the
current context can be understood as finite-size effects.

The region controlled entirely by the power law ap-
pears to be no more than two decades of magnitude at
the largest system size for each distribution. Therefore,
even when we use the steepest decade of data at the
largest system size to fit a power law, we obtain ex-
ponent estimates significantly lower than the ones in-
ferred by comparing different system sizes: 𝛾 ≈ 0.37 and
𝜃 ≈ 0.42. The shallower behavior in the cutoff regimes
affects the curve significantly even dacades away from
the overt crossover. This appears to not be the case for
sphere jamming, where the sparsity of the constraints in
comparison with the number of degrees of freedom seems
to allow the efficient simulation of much larger systems,
where the power-law regime spans 3–4 decades. Even in
that case, the subcritical and supercritical regimes could
still have an effect on the apparent power-law exponents.
Studying the finite-size scaling of the distribution could
provide a useful comparison.

We can test the finite-size scaling hypotheses, (2) and
(3), by appropriately rescaling the axes by the appropri-
ate powers of 𝑛. When we use our inferred exponent val-
ues to rescale the data (see Figure 3), they collapse to a
size-independent curve, with a common behavior in the
critical and subcritical regimes. The theoretically pre-
dicted exponent values give a slightly, but visibly, poorer
collapse, especially for the distribution of slacks.

While the scaling curve appears to be size-
independent, we do observe striking protocol dependence:
in addition to the sequential LP protocol described above,
we implemented two additional protocols at smaller sizes.
The edge-climbing (EC) protocol mimics the simplex al-
gorithm of linear programming, starting at a vertex of
the feasible region and traveling at each step to an adja-
cent vertex along the edge offering the largest directional
derivative of the objective. When all such derivatives are
negative, a local optimum is achieved and the protocol
terminates. The edge-jumping (EJ) protocol makes EC
moves when they are available, but otherwise tries each
edge and follows it if the objective value at the other end-
point is larger. If neither type of move is available, the
protocol terminates.

We see an overt difference in the distribution of forces
at the jamming point achieved by the two protocols (Fig-
ure 4). While 𝑝(𝑓) shows similar behaviors in the power
law regime, below the cutoff we observe 𝑝(𝑓) ∼ constant
in the EC protocol, and 𝑝(𝑓) ∼ 𝑓 in the EJ protocol.
The edge-jumping moves destabilize weak constraints
and suppress the subcritical regime of the force distri-
bution in a nonuniversal way, clearly distinguished from
the universal critical suppression.

The perceptron model provides a numerically tractable
setting in which to test many of the theoretical ideas and
methods about the jamming transition. Finite-size ef-
fects studied here could be crucial to applying these ideas
to real-world problems away form the thermodynamic
limit. In the present case at least, comparison of systems
of different sizes provides a more sensitive measure of the
critical exponents, which are distorted by finite-size ef-
fects in any single size studied here. Our estimates of the
critical exponents match those measured numerically in
sphere jamming systems, supporting the conjecture that
they are in the same universality class. However, we
observe some variance from the theoretically predicted
exponent values, both in the scaling of the minimal force
and minimal slack with system size, and in the finite-size
scaling collapse. Finally, we observe size-independent but
protocol-dependent finite-size scaling curves that demon-
strate distinct critical and subcritical behavior.
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