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Obtaining general relations between macroscopic properties of random assemblies, such as den-
sity, and the microscopic properties of their constituent particles, such as shape, is a foundational
challenge in the study of amorphous materials. By leveraging existing understanding of the random
packing of spherical particles, we estimate the random packing density for all sufficiently spherical
shapes. Our method uses the ensemble of random packing configurations of spheres as a reference
point for a perturbative calculation, which we carry to linear order in the deformation. A fully
analytic calculation shows that all sufficiently spherical shapes pack more densely than spheres.
Additionally, we use simulation data for spheres to calculate numerical estimates for nonspherical
particles and compare these estimates to simulations.

Understanding the relationship between macroscopic
properties of a random assembly and the microscopic
properties, such as shape and composition, of the par-
ticles that make it up is a fundamental problem in ma-
terial science. Colloidal suspensions [1], granular ma-
terials [2], nanoparticle assemblies [3], and biomaterials
[4, 5] all feature disordered agglomerations of nonover-
lapping particles. When the particles are all undeformed
spheres of the same size, the typical maximal density,
measured by volume fraction, obtained by random pack-
ing is 𝜑 ≈ 0.64. Though the precise value of the density
depends on preparation protocol, the conventional value,
to within a percent, has been reproduced in many exper-
imental and computational settings [6–9]. This robust
value suggests a purely geometric phenomenon, irrespec-
tive of particular system-specific details such as residual
interaction, hydrodynamics, or gravity, and this density
is known as the random-close-packing density. The term
random packing implies the lack of crystalline order in
the packing, even at short ranges. Without this restric-
tion, the largest volume fraction obtained by packing of
nonoverlapping spheres is 𝜋/3

√
2 ≈ 0.74 [10].

While the case of equal-sized spheres is the canoni-
cal one, applications in granular materials [11, 12], bio-
physics [13, 14], liquid crystals [15], and self-assembly
[16, 17] have driven interest in the random packing of
nonspherical particles, as well as flexible particles [18]
and polydisperse samples [19]. Simulations and experi-
mental work have focused on particular shapes such as
ellipsoids [20, 21], spherocylinders [22, 23], and Platonic
polyhedra [24, 25]. Convex shapes appear to achieve ran-
dom packing densities well above that of spheres. This
situation is similar to the situation for the optimal (non-
random) packing of nonspherical particles: a conjecture,
attributed to Ulam, posits that spheres have the lowest
optimal packing density among all convex shapes [26].
Simulations with a large collection of shapes have ver-
ified in each case that the shape can indeed be packed
more densely than spheres [27], and it is proven that
the same is true for any sufficiently spherical shape,
where asphericity is measured by 𝛾, the radius ratio of

smallest circumscribed sphere to largest inscribed sphere
[28, 29]. It has also been conjectured that all convex
shapes below a certain asphericity (Jiao and Torquato
suggest 𝛾 < 1.2) have random packing densities above
that of spheres [24, 30]. A mean-field calculation, focus-
ing on axis-symmetric shapes, has provided some theo-
retical backing to the conjecture [30, 31]. In contrast to
Ulam’s conjecture, the sphere cannot be a global mini-
mum, since very elongated particles have random pack-
ing densities in inverse proportion to their aspect ratio,
so they can be arbitrarily small [32].

Moreover, unlike the optimal density, which is rig-
orously defined, the random-close-packing density does
not have an accepted mathematical definition. Oper-
ationally, random close packing is often defined as the
packing obtained through some fixed numerical proto-
col [33], for example, a molecular dynamics simulation
of slowly expanding hard particles [34] or a sequence of
energy minimization of a system of soft particles to con-
verge to the density where the repulsion energy is on the
verge of becoming nonzero [35]. We present a heuristic
calculation that predicts, irrespective of the preparation
protocol, that any sufficiently spherical convex shape will
yield a higher density than spheres would given the same
protocol. An important assumption we make about the
protocol is that it produces isostatic packings when ap-
plied to spherical particles; that is, the number of in-
terparticle contacts is equal to the number of degrees of
freedom, as predicted by Maxwellian constraint counting
(when unconstrained “rattlers” are removed). Isostatic-
ity is observed in nearly all random packing protocols
for spheres, but random packings of nonspherical parti-
cles are usually hypostatic, with far fewer contacts than
degrees of freedom [21].

The calculation we present is an extension to general
convex shapes in three dimensions of the calculation per-
formed by Donev et al. in two dimensions for ellipses [21].
The calculation relies on the assumption that for nearly
spherical particles, the following two procedures would
produce similar results: (1) applying the random pack-
ing protocol to spheres and then deforming the spheres
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to the shape of interest while maintaining a compressive
pressure; and (2) applying the random packing proto-
col directly to the particles of interest. The rationale is,
that nearly spherical particles will behave like sphere for
the majority of the compression protocol, and their as-
phericity will only come into effect near the end, when
the configuration is similar to a random packed configu-
ration of spheres. This argument has been shown to hold
true in the case of ellipses [21].

Therefore, we begin with a random packed configura-
tion of 𝑁 spheres of equal diameter 𝜎, and we continu-
ously deform it into a packing of particles all congruent
to a given body. Geometrically, the body is described as
a compact subset 𝐾 ⊆ R3. We can also define its radial
function 𝑟𝐾(u) = max𝜆u∈𝐾 𝜆 as the distance from the
center of 𝐾 to its boundary along a certain direction u.
Without loss of generality, we will assume that the largest
ball contained in 𝐾 is of diameter 𝜎, and let 𝜎 +Δ𝜎 be
the diameter of the smallest concentric ball that contains
𝐾. Thus, 𝜖 = Δ𝜎/𝜎 = 𝛾− 1 measures the eccentricity of
𝐾. We consider a one-parameter family of nested convex
shapes 𝐾𝑡, 0 ≤ 𝑡 ≤ 1 such that 𝐾0 is the ball of diameter
𝜎 and 𝐾1 = 𝐾. As a first step, we calculate the change
in volume if the orientation of each particle is fixed: we
assign to each sphere a rotation matrix 𝑅𝑖, 𝑖 = 1, . . . , 𝑁 ,
so that the packing at time 𝑡 is given by the collection
{𝑅𝑖𝐾𝑡 + x𝑖(𝑡) : 𝑖 = 1, . . . , 𝑁}. Since the sphere is invari-
ant under rotations, any choice of the matrices 𝑅𝑖 gives
the same configuration at 𝑡 = 0.

Throughout the deformation, we maintain a compres-
sive pressure on the sample by applying external forces
to the particles along the boundary. We label by F𝑖 the
external force applied to particle 𝑖 (F𝑖 = 0 for particles
away from the boundary). By definition, we measure the
change in volume by the work performed by the particles
against these forces: 𝑝Δ𝑉 =

∑︀𝑁
𝑖=0⟨F𝑖,x𝑖(1) − x𝑖(0)⟩.

From the balance of forces on each particle at 𝑡 = 0 we
have that

F𝑖 =
∑︁
𝑗∈𝜕𝑖

𝑓𝑖𝑗n𝑖𝑗 , (1)

where 𝜕𝑖 is the set of indices of particles in contact with
particle 𝑖 at time 𝑡 = 0, n𝑖𝑗 is a unit normal vector at the
contact point between particles 𝑖 and 𝑗, and 𝑓𝑖𝑗 = 𝑓𝑗𝑖
is the contact force magnitude. The pairs of particles
that are in contact, their contact normal, and contact
force will evolve throughout the deformation, but we use
the symbols 𝜕, n𝑖𝑗 , and 𝑓𝑖𝑗 without a time argument
to denote their values at 𝑡 = 0. We also use

∑︀
𝑖∼𝑗 to

denote a sum over unordered pairs {𝑖, 𝑗} such that 𝑗 ∈ 𝜕𝑖.
Summing over all particles, we obtain

𝑝Δ𝑉 =
∑︁
𝑖∼𝑗

𝑓𝑖𝑗⟨n𝑖𝑗 ,Δx𝑖 −Δx𝑗⟩. (2)

The pressure 𝑝 is an arbitrary conversion factor between
energy and volume dimensions, which we fix by applying

(2) to an infinitesimal uniform expansion, Δx𝑖 = 𝛼x𝑖 and
Δ𝑉 = 3𝛼𝑉 , to obtain 3𝑝𝑉 = 𝜎

∑︀
𝑖∼𝑗 𝑓𝑖𝑗 , or equivalently,

⟨𝑓⟩ = 6𝑝𝑉

𝑁𝜎⟨|𝜕𝑖|⟩𝑖
, (3)

where ⟨|𝜕𝑖|⟩𝑖 is the mean coordination number, which is
6 for isostatic packings.
We first consider pairs of particles that are at contact

at time 𝑡 = 0 and remain so throughout the deformation.
Their relative displacement satisfies

Δx𝑖 −Δx𝑗 = 𝑟𝐾(𝑅−1
𝑖 u𝑖𝑗)u𝑖𝑗 − 𝑟𝐾(𝑅−1

𝑗 u𝑗𝑖)u𝑗𝑖 − 𝜎n𝑖𝑗 ,
(4)

where u𝑖𝑗 (u𝑗𝑖) is a unit vector in the direction from
the center of the particle 𝑖 (𝑗) to the point of contact
at time 𝑡 = 1. We assume the change in the packing
geometry is continuous, so that u𝑖𝑗 and u𝑗𝑖 approach
±n𝑖𝑗 in the limit that 𝜖 → 0. Therefore, as a zeroth-
order approximation, we plug in u𝑖𝑗 = −u𝑗𝑖 = n𝑖𝑗 to
get Δx𝑖 −Δx𝑗 =

[︀
𝑟𝐾(𝑅−1

𝑖 n𝑖𝑗) + 𝑟𝐾(−𝑅−1
𝑗 n𝑖𝑗)− 𝜎

]︀
n𝑖𝑗 .

We estimate the error between the zeroth order approx-
imation and the actual displacement by assuming self-
consistently that the size of the displacement does not
exceed the order 𝑂(𝜎𝜖) predicted by the approxima-
tion, and therefore, that u𝑖𝑗 − n𝑖𝑗 = 𝑂(𝜖) as well. To-
gether with the fact that the function 𝑟𝐾(u) is 𝑂(𝜎𝜖1/2)-
Lipschitz continuous [36], we obtain

⟨n𝑖𝑗 ,Δx𝑖 −Δx𝑗⟩ =
Δ𝑟(𝑅−1

𝑖 n𝑖𝑗) + Δ𝑟(−𝑅−1
𝑗 n𝑖𝑗) +𝑂(𝜎𝜖3/2),

(5)

where Δ𝑟(u) = 𝑟𝐾(u)− (𝜎/2).
For contacts that are broken during the deformation,

the right hand side of (5) serves only as a lower bound,
but we assume that the displacement is still of order
𝑂(𝜎𝜖). Since the initial number of contacts is the min-
imal number required to maintain stability, the number
of contacts broken is at most equal to the number of
new contacts made [21]. A rough upper bound for the
number of new contacts made is the number of pairs of
spheres, not initially in contact, which would come to
overlap if we dilated each sphere by a factor 1 + 𝜖. The
number of such pairs asymptotically for small 𝜖 is known
in random packing configurations of spheres to approach
𝐴𝑁𝜖∼0.6 [37]. Assuming that the forces associated with
broken contacts are at most of average magnitude (typi-
cally contacts with smaller forces will break first), we see
that the contribution to Δ𝑉 from broken contacts in (5)
is of order at most 𝑁𝜖∼1.6. Thus, to leading order in 𝜖,

𝑝Δ𝑉 =
∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

𝑓𝑖𝑗Δ𝑟(𝑅−1
𝑖 n𝑖𝑗) +𝑂(𝑉 𝜖3/2). (6)

We now consider what the change in volume would be
if instead of holding the particle orientations fixed, we
allowed them to rotate freely. As the system is under a
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compressive pressure, it will tend to adopt the orienta-
tions that allow it to minimize the volume. Therefore we
assume that the change in volume will be the same as
if we held the particle orientations fixed during the de-
formation but rotated them in advance (while they are
spheres, and their orientations is physically irrelevant) to
the orientations that will yield the lowest volume at the
end of the deformation. Namely, we assume that 𝑝Δ𝑉 is
equal to the minimum of the right hand side of (6) over
all choices of the rotation matrices 𝑅𝑖. The error term
can be moved outside of the minimization, and we are
left with

𝑝Δ𝑉 = min
𝑅𝑖∈𝑆𝑂(3)
for all 𝑖

⎡⎣∑︁
𝑖

∑︁
𝑗∈𝜕𝑖

𝑓𝑖𝑗Δ𝑟(𝑅−1
𝑖 n𝑖𝑗)

⎤⎦+𝑂(𝑉 𝜖3/2).

(7)
Remarkably, each term in the outer sum being minimized
depends only on the orientation of a single particle and
can be minimized independently of all the other terms.
Also, as 𝑅𝑖 is a dummy variable, we can replace it with
its inverse, as we do for neatness henceforth.

The density of the final packing is given by 𝑁𝑣𝐾/𝑉 (1),
where 𝑣𝐾 is the volume of a single particle and is given
by

𝑣𝐾 =

∫︁
u∈𝑆2

𝑟𝐾(u)3𝑑2u

= 4𝜋
3 (𝜎/2)3 + 4𝜋(𝜎/2)2Δ𝑟 +𝑂(𝜎3𝜖2),

(8)

where · represents the average over the unit sphere 𝑆2.
Rewriting (7) in terms of the intensive density instead
of the extensive volume and eliminating the arbitrary
pressure by using (3), we get

Δ𝜑

3𝜑0
=

Δ𝑟(u)

𝜎/2
−

⟨
min
𝑅

∑︁
𝑗∈𝜕𝑖

𝑓𝑖𝑗Δ𝑟(𝑅n𝑖𝑗)

⟩
𝑖

(𝜎/2)⟨|𝜕𝑖|⟩𝑖⟨𝑓⟩
+𝑂(𝜖3/2), (9)

where the average ⟨·⟩𝑖 represents an average over the par-
ticles in the initial packing. The calculation is valid also
in dimensions 𝑑 ̸= 3, in which case 𝑑 should be substi-
tuted for 3 in (9).

If, instead of minimizing over 𝑅 in (9), we averaged
over 𝑅, the first two terms on the right hand side would
cancel. Since the mean serves an upper bound for
the minimum, this argument immediately gives Δ𝜑 >
−𝑂(𝜖3/2). This is almost the claim we wish to make,
namely, that the random packing density of any nearly
spherical convex shape is larger than that of spheres. To
strictly bound Δ𝜑 above 0, we have to find a better lower
bound on the gap between the minimum and the average.

Consider a particle 𝑖, then we are interested in the
minimum of 𝑔𝑖(𝑅) =

∑︀
𝑗∈𝜕𝑖 𝑓𝑖𝑗Δ𝑟(𝑅n𝑖𝑗). We can aver-

age 𝑔𝑖(𝑅) over all rotations that map a fixed point, say
the north pole z, on 𝑆2 to a given point v to obtain a

function over 𝑆2:

ℎ𝑖(v) =
1
2𝜋

∫︁ 2𝜋

𝜃=0

𝑑𝜃
∑︁
𝑗∈𝜕𝑖

𝑓𝑖𝑗Δ𝑟(𝑅v𝑅𝑧(𝜃)n𝑖𝑗), (10)

where 𝑅v is the rotation mapping z to v around the axis
perpendicular to both, and 𝑅𝑧(𝜃) is the rotation about
the 𝑧-axis by an angle of 𝜃. Clearly, the minimum of ℎ𝑖(v)
is no smaller than the minimum of 𝑔𝑖(𝑅). The structure
of the linear operator Φ𝑖 : Δ𝑟(u) ↦→ ℎ𝑖(v) is that of a
convolution with a zonal (i.e. invariant over rotations that
fix the pole) measure over 𝑆2 [38]. This structure allows
us to bound the 𝐿1 norm of the deviation of ℎ𝑖(v) from
its mean in terms of that deviation in Δ𝑟. This procedure
also gives the following bound on the minimum:

min
𝑅

𝑔𝑖(𝑅)− 𝑔𝑖(𝑅) ≤ min
v

ℎ𝑖(v)− ℎ𝑖(v)

≤ 𝑐𝑖|Δ𝑟(u)−Δ𝑟(u)|.
(11)

We do not give a complete description of this proce-
dure, as it is essentially the same as Section 4 of [28].
The constant 𝑐𝑖 is strictly positive whenever the spher-
ical harmonic expansion of the zonal measure used in
the convolution has no terms that vanish. Therefore,
as this will not happen generically (not to mention to
a fraction of particles approaching one), we can safely
assume that the average value ⟨𝑐𝑖⟩𝑖 is strictly positive.
Using the bound (11) in (9), we immediately get that

Δ𝜑 > 𝑐|Δ𝑟(u)−Δ𝑟(u)| for some constant 𝑐. As the
right hand side is zero only for spheres, we have obtained
the result we were after.
Having obtained the theoretical result for general

shapes and general packing protocols, we now wish to
calculate numerical estimates for specific shapes and pro-
tocols. Consider a family of convex shapes, parame-
terized by some single variable, 𝛼, that includes the
sphere of diameter 𝜎 at 𝛼 = 𝛼0. Let 𝑟𝛼(u) be the
radial function describing the shapes, and let 𝜌(u) =
(𝑑𝑟𝛼(u)/𝑑𝛼|𝛼+

0
)/(𝜎/2). We define 𝜂 as a measure of the

slope of the random packing density subject to a given
protocol as a function of the parameter 𝛼:

𝜂 =
1

3𝜑

𝑑𝜑(𝛼)

𝑑𝛼

⃒⃒⃒⃒
𝛼+

0

. (12)

We take the derivative in the direction of positive 𝛼, as
𝜑(𝛼) is usually not smooth at 𝛼0. From (9) we have

𝜂 = 𝜌(u)− 1

⟨|𝜕𝑖|⟩𝑖⟨𝑓⟩

⟨
min
𝑅

∑︁
𝑗=𝜕𝑖

𝑓𝑖𝑗𝜌(𝑅u𝑖𝑗)

⟩
𝑖

, (13)

where ⟨·⟩𝑖 denotes the average over particles in random
packing configuration of spheres produced by the same
protocol.
We estimate 𝜂 for a few examples of shape families in

the case of the random packing protocol of Jin and Makse
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FIG. 1. We calculate numerical slope estimates for 12 shape
families, representatives of which are illustrated here in the
order listed in Table I (from top, left to right).

[39]. To numerically calculate (13), we use a dataset that
includes the coordinates and forces of a configuration of
104 spheres in a periodic cubic box [39].
Consider first the family of prolate ellipsoid, param-

eterized by aspect ratio. The infinitesimal deformation
is 𝜌(𝜃, 𝜙) = cos2 𝜃 and we can solve the minimization
analytically:

𝜂prol =
1

3
− 1

⟨|𝜕𝑖|⟩𝑖⟨𝑓⟩
⟨𝜆min(𝐹𝑖)⟩𝑖 , (14)

where 𝐹𝑖 =
∑︀

𝑗∈𝜕𝑖 𝑓𝑖𝑗n𝑖𝑗 ⊗ n𝑖𝑗 is a symmetric ten-
sor describing the stress on particle 𝑖, and 𝜆min is its
smallest eigenvalue. We calculate a numerical value of
𝜂prol = 0.202 ± 0.001. The error estimate quoted in-
cludes only statistical error. There could be systematic
error from the fact that the dataset we use is not precisely
at the isostatic point and from finite-size effects.

For an oblate ellipsoid, 𝜌 = 1− cos2 𝜃, and so

𝜂obl =
1

⟨|𝜕𝑖|⟩𝑖⟨𝑓⟩
⟨𝜆max(𝐹 )⟩𝑖 −

1

3
. (15)

Numerically, we get 𝜂obl = 0.242 ± 0.003. In the case of
triaxial ellipsoids, we consider for each 0 < 𝜇 < 1 the
family where the principal axes are given by 𝜎 < 𝛼𝜇𝜎 <
𝛼𝜎. Then 𝜌(𝜃, 𝜑) = cos2 𝜃 + 𝜇 sin2 𝜃 cos2 𝜑, and we get
𝜂triax = (1− 𝜇)𝜂prol + 𝜇 𝜂obl.
Leaving aside ellipsoids, where minimization can be

done analytically, we consider other shape families of in-
terest, illustrated in Figure 1 and defined in the appendix.
We numerically find𝑅𝑖 that minimizes

∑︀
𝑗∈𝜕𝑖 𝑓𝑖𝑗𝜌(𝑅𝑖n𝑖𝑗)

for each of the 104 spheres in the dataset and for each
shape family. The resulting numerical values for the slope
𝜂 = (1/3)𝑑𝜑/𝑑𝛼 are given in Table I. Since the value of
𝜂 depends on the way the family of shapes is parameter-
ized, we also give the normalized value 𝜂/|𝜌− 𝜌| [40].

shape family 𝜂 𝜂/(|𝜌− 𝜌|)
oblate ellipsoid 0.242± 0.003 0.94± 0.01

prolate ellipsoid 0.202± 0.001 0.79± 0.01

lens 0.216± 0.004 0.86± 0.01

spherocylinder 0.271± 0.002 1.08± 0.01

spherodisk 0.246± 0.003 1.36± 0.02

spindle 0.139± 0.005 0.77± 0.03

rounded tetrahedron 0.189± 0.003 1.45± 0.02

tetrahedral puff 0.138± 0.005 1.06± 0.04

rounded triangle 0.306± 0.002 1.31± 0.01

triangular spindle 0.235± 0.004 1.01± 0.02

cubic superball 0.142± 0.001 1.32± 0.01

octahedral superball 0.130± 0.002 1.20± 0.02

TABLE I. Slopes of the random close packing density of one-
parameter families of shapes at the point corresponding to the
sphere. The slope parameter is defined as 𝜂 = (1/3)𝑑𝜑/𝑑𝛼
and depends on the parameterization. The normalized ver-
sion, 𝜂/(|𝜌− 𝜌|), where 𝜌(u) = 𝑑𝑟𝛼(u)/𝑑𝛼, is intrinsic to the
shape family
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FIG. 2. Random packing density of prolate and oblate ellip-
soids according to simulation results of Ref. [21] together with
lines illustrating predicted slopes at 𝛼 = 1. Inset: Random
packing density of octahedral and cubic superballs according
to simulation results of Ref. [41] together with lines illustrat-
ing predicted slopes at 𝑝 = 1.

Rounded tetrahedra appear to give the largest nor-
malized improvement in packing density out of all the
families considered. This observation is in harmony with
the fact that regular tetrahedra, out of all convex shapes
that have been studied, seem to have the largest random
close packing density [42].

We compare our predicted slopes to simulation data for
prolate and oblate ellipsoids [21] and for superballs [41]
in Figure 2. The protocols used in these simulations are
differenent than the protocol used to obtain the data on
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which we based our numerical calculation, so this com-
parison should be interpreted with caution. It is hard
to tell from the limited data if our calculation system-
atically overestimates the slope of the density curve, or
whether nonlinearities of the curve quickly cause the data
to diverge from the linear estimate. To resolve this un-
certainty, data for shapes in these families closer to the
spheres will be needed.

The method we present allows us to extend the ex-
isting robust knowledge about the random packing be-
havior of spheres to all sufficiently spherical shapes. We
perform some numerical calculations for specific one- and
two-parameter families of three-dimensional shapes, but
our method is applicable to any nearly spherical shape in
any number of dimensions. As such, it provides a valu-
able tool to test general ideas about the random packing
behavior of nonspherical shapes, such as the conjecture
that spheres minimize this density among all sufficiently
spherical convex shapes. Our calculation predicts that
indeed spheres are a local minimum, providing substan-
tial backing to the conjecture. It is worth noting that this
claim holds irrespective of the number of dimensions. In
this aspect, the optimal (nonrandom) packing problem is
completely different: the 𝑑-dimensional sphere in any di-
mension other than 3 does not appear to be even a local
minimum of the optimal packing density [28].
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Appendix: definition of shape families

In this appendix, we give definitions of the families of
shapes for which the slope of the random packing density
curve was calculated in Table I.

An oblate ellipsoid of aspect ratio 𝛼 is the region
{(𝑥, 𝑦, 𝑧) ∈ R3 : (𝑥/𝛼)2 + (𝑦/𝛼)2 + 𝑧2 ≤ 1}, where
𝛼 > 1. A prolate ellipsoid is the region {(𝑥, 𝑦, 𝑧) ∈ R3 :
𝑥2+𝑦2+(𝑧/𝛼)2 ≤ 1}, where 𝛼 > 1. A lens is the intersec-
tion of two equal-sized spheres, and a spherocylinder is
the convex hull of two equal-sized spheres. A spherodisk
is the convex hull of all equal-sized spheres with centers
on a given circle, and a spindle is the intersection of such
a family of spheres. All shapes in these six families are
axis symmetric.

We consider a few more bodies without axial symme-
try. A tetrahedral puff is the intersection of four equal-
sized spheres with centers at the corners of a regular
tetrahedron [43]. A rounded tetrahedron is the convex
hull of four such spheres. Similarly, a triangular spindle
and a rounded triangle, are, respectively, the intersection
and convex hull of three equal-sized spheres at the cor-

ners of an equilateral triangle. A superball is the region of
space determined by the inequality |𝑥|2𝑝+|𝑦|2𝑝+|𝑧|2𝑝 ≤ 1
[41]. When 𝑝 = 1, we recover the Euclidean ball. When
1 < 𝑝 < ∞, we call the superballs cubic, since they
interpolate between the ball and the cube. Similarly, su-
perballs with 1

2 < 𝑝 < 1 are called octahedral, as they
interpolate between the ball and the octahedron.
The infinitesimal deformations associated with these

families are

𝜌obl-ell(u) = −𝜌prol-ell(u) = −𝑢2
𝑧

𝜌lens(u) = −𝜌sph-cyl(u) = −|𝑢𝑧|

𝜌sph-disk(u) = −𝜌spindle(u) =
√︀
1− 𝑢2

𝑧

𝜌rnd-tet(u) = −𝜌tet-puff(u) = max
𝑖=1,2,3,4

u · vtet
𝑖

𝜌rnd-tri(u) = −𝜌tri-spind(u) = max
𝑖=1,2,3

u · vtri
𝑖

𝜌cub-sup(u) = −𝜌oct-sup(u) = −
∑︁

𝑖=𝑥,𝑦,𝑧

𝑢2
𝑖 log(𝑢𝑖),

(16)

where u = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is a point on the unit sphere, vtet
𝑖 ,

𝑖 = 1, 2, 3, 4, are the four vertices of a regular tetrahedron
inscribed in the unit sphere, and vtri

𝑖 , 𝑖 = 1, 2, 3, are the
three vertices of an equilateral triangle inscribed in the
equator.
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